Opendata, web and dolomites


Low Degree Points on Modular Curves

Total Cost €


EC-Contrib. €






 LowDegModCurve project word cloud

Explore the words cloud of the LowDegModCurve project. It provides you a very rough idea of what is the project "LowDegModCurve" about.

he    mcgill    agr    points    11    sup    representation    expert    elliptic    natural    parent    postdocs    uniformity    classified    validity    realize    kamienny    serre    last    degree    excellent    theory    existence    months    subjects    space    warwick    rieure    proof    made    overdetermined    criterion    host    jacobian    power    intimately    galois    chabauty    quotient    2015    interesting    bordeaux    students    representations    le    rational    phd    arithmetic    adjacent    setting    november    influential    rebolledo    theme    researcher    mazur    merel    version    henri    cole    darmon    breakthroughs    ambition    pierre    formal    september    position    fermat    image    theorem    heart    conjecture    modular    zero    celebrated    siegel    internship    active    modularity    de    works    12    modern    rank    pr    dr    fail    supervisor    immersion    lyon    siksek    did    split    theorems    quadratic    parateur    group    cartan    supervising    curves    independent    professor    university    considerable    envisioned    normale    motivated    moduli    images    underlies    varieties    bilu    powerful    fourn    eacute    symmetric    curve    2014    geometry   

Project "LowDegModCurve" data sheet

The following table provides information about the project.


Organization address
address: Kirby Corner Road - University House
postcode: CV4 8UW

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-03   to  2020-09-02


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 195˙454.00


 Project objective

The study of Galois representations of elliptic curves is at the heart of modern arithmetic geometry, and intimately related to modularity theorems and the proof of Fermat's Last Theorem. Galois representations of elliptic curves are classified by their images. Associated to a possible image is a modular curve which is a moduli space of elliptic curves with representation having that image. The study of rational and low degree points on modular curves underlies the celebrated theorems of Mazur, Kamienny, Merel, Bilu, Parent and Rebolledo. A common theme in all these works is the existence of a rank zero quotient of the modular Jacobian, and the validity of a formal immersion criterion. In this project, motivated by Serre's uniformity conjecture, we study rational and low degree points on interesting modular curves where these conditions fail, developing and extending powerful methods including an overdetermined version of Chabauty in the symmetric power setting, and quadratic Chabauty for the non-split Cartan modular curves.The University of Warwick has a strong and active number theory group, making it a natural host for the project. The Supervisor, Professor Siksek, is a leading expert on curves, Galois representations and modularity, with considerable experience in supervising research including 11 postdocs and 12 completed PhD students. The Researcher, Dr Le Fourn, did his PhD at Bordeaux (completed November 2015) with Professor Pierre Parent, including a 3 months internship at McGill with Professor Henri Darmon. Since September 2014 he has held the position of Agrégé préparateur at the École Normale Supérieure de Lyon. He has made excellent breakthroughs both in the theory of Q-curves, and in the arithmetic of Siegel modular varieties. The envisioned research will make the Researcher influential in modular curves and adjacent subjects, and allow him to realize his ambition of becoming an independent researcher at a leading European institution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LOWDEGMODCURVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LOWDEGMODCURVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More  

SIMIS (2020)

Strongly Interacting Mass Imbalanced Superfluid with ultracold fermions

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More