Opendata, web and dolomites


Low Degree Points on Modular Curves

Total Cost €


EC-Contrib. €






 LowDegModCurve project word cloud

Explore the words cloud of the LowDegModCurve project. It provides you a very rough idea of what is the project "LowDegModCurve" about.

parent    immersion    points    position    formal    adjacent    active    validity    theory    representations    last    intimately    henri    celebrated    pierre    symmetric    existence    classified    overdetermined    fail    space    curves    bilu    le    chabauty    darmon    mazur    de    11    works    setting    did    students    expert    rank    powerful    university    split    rational    serre    images    heart    proof    image    fourn    supervising    cartan    elliptic    cole    mcgill    professor    quotient    criterion    power    theme    jacobian    natural    influential    kamienny    made    modular    realize    postdocs    uniformity    2014    lyon    supervisor    pr    theorem    researcher    rebolledo    phd    september    modern    breakthroughs    november    parateur    galois    siegel    curve    arithmetic    months    he    modularity    considerable    varieties    agr    2015    fermat    subjects    warwick    group    quadratic    representation    excellent    internship    envisioned    interesting    eacute    conjecture    dr    underlies    independent    rieure    ambition    siksek    merel    12    sup    theorems    bordeaux    normale    version    geometry    host    zero    degree    moduli    motivated   

Project "LowDegModCurve" data sheet

The following table provides information about the project.


Organization address
address: Kirby Corner Road - University House
postcode: CV4 8UW

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-03   to  2020-09-02


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 195˙454.00


 Project objective

The study of Galois representations of elliptic curves is at the heart of modern arithmetic geometry, and intimately related to modularity theorems and the proof of Fermat's Last Theorem. Galois representations of elliptic curves are classified by their images. Associated to a possible image is a modular curve which is a moduli space of elliptic curves with representation having that image. The study of rational and low degree points on modular curves underlies the celebrated theorems of Mazur, Kamienny, Merel, Bilu, Parent and Rebolledo. A common theme in all these works is the existence of a rank zero quotient of the modular Jacobian, and the validity of a formal immersion criterion. In this project, motivated by Serre's uniformity conjecture, we study rational and low degree points on interesting modular curves where these conditions fail, developing and extending powerful methods including an overdetermined version of Chabauty in the symmetric power setting, and quadratic Chabauty for the non-split Cartan modular curves.The University of Warwick has a strong and active number theory group, making it a natural host for the project. The Supervisor, Professor Siksek, is a leading expert on curves, Galois representations and modularity, with considerable experience in supervising research including 11 postdocs and 12 completed PhD students. The Researcher, Dr Le Fourn, did his PhD at Bordeaux (completed November 2015) with Professor Pierre Parent, including a 3 months internship at McGill with Professor Henri Darmon. Since September 2014 he has held the position of Agrégé préparateur at the École Normale Supérieure de Lyon. He has made excellent breakthroughs both in the theory of Q-curves, and in the arithmetic of Siegel modular varieties. The envisioned research will make the Researcher influential in modular curves and adjacent subjects, and allow him to realize his ambition of becoming an independent researcher at a leading European institution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LOWDEGMODCURVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LOWDEGMODCURVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More