Explore the words cloud of the IMagE project. It provides you a very rough idea of what is the project "IMagE" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 159˙460 € |
EC max contribution | 159˙460 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2017 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2020-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (Munich) | coordinator | 159˙460.00 |
Solar brightness varies at all measured timescales and wavelengths, and can affect terrestrial atmosphere and climate. Variations on timescales longer than a day are driven by the solar surface magnetic activity. Solar magnetic field modifies the structure of the solar atmosphere and its radiative properties, appearing at the surface as dark spots and bright faculae. These features continuously evolve with time and modulate solar brightness. Although significant progress has been made in modeling solar brightness variations, their amplitude in the ultraviolet (UV) range remains controversial. IMagE aims at resolving this controversy.
A crucial ingredient of the irradiance models are brightness spectra of the various magnetic components. Spectra that have been used until now relied on a number of simplifications that are not valid in the UV. To properly account for the physical mechanisms which influence the solar variability in the UV, including the line blanketing and departures from local thermodynamic equilibrium (LTE), non-LTE computations of spectra from realistic 3D magnetohydrodynamic (MHD) atmospheres are needed. This is computationally extremely challenging. IMagE will exploit state-of-the-art MHD and radiative transfer simulations to device a method for efficient, yet accurate, synthesis of the non-LTE brightness spectra of the different magnetic components. This method will be validated against high spatial resolution observations of the Sun. Incorporation of the spectra computed with this method in the physics-based irradiance models will lead to a breakthrough in our understanding of the solar UV irradiance variability. The grid of non-LTE spectra for different magnetic field strengths and solar disc positions produced within IMagE can also be used to analyze the data from future missions, for instance SUNRISE III and the maiden Indian solar mission Aditya-L1.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMAGE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "IMAGE" are provided by the European Opendata Portal: CORDIS opendata.
Neural mechanisms of crossmodal activity in blind and sighted individuals
Read MorePolitics of Rulemaking, Orchestration of Standards, and Private Economic Regulations
Read MoreMultiparametric imaging of glioblastoma tumour heterogeneity for supporting treatment decisions and accurate prognostic estimation
Read More