Opendata, web and dolomites

UPDWMI SIGNED

Ultra-low Power Digital circuits for Wireless Medical Implants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UPDWMI project word cloud

Explore the words cloud of the UPDWMI project. It provides you a very rough idea of what is the project "UPDWMI" about.

technologies    interdisciplinary    wireless    full    bio    benefit    nanotechnology    ongoing    signal    receive    specifications    electrical    area    custom    knowhow    small    limitations    analog    sensor    complement    biochemist    ideally    ultra    cancer    physicist    arithmetic    designing    organization    she    hence    memory    communication    determines    circuits    ics    medical    designers    monitor    device    chip    consumption    optimize    teaching    mentoring    characterization    compression    power    nodes    fits    human    healthcare    multiple    data    digital    primary    ic    cells    acceptance    team    bandwidth    right    body    sensitive    researcher    nervous    extensive    grain    sensors    implant    efficient    experiences    deriving    organs    training    mixed    interfacing    located    tumors    rice    multidisciplinary    silicon    host    source    advances    clinicians    tradeoff    performance    transmission    made    miniature    electronic    interfaces    circuit    electronics    cmos    components    interact    physiological    implants    group    toxicity    size   

Project "UPDWMI" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EDINBURGH 

Organization address
address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL
website: www.ed.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-15   to  2020-09-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) coordinator 195˙454.00

Map

 Project objective

Advances in nanotechnology have made it possible to implant ultra-small electronic sensors in the human body. Interfacing with organs and nervous system, these devices will be a key part of future healthcare technologies. One of the most important components in such a device is the electronic integrated circuit (IC) located right at the signal source. This determines the overall power consumption and size of an implant. However, due to the need for sensitive analog circuits and toxicity concerns, very advanced silicon technology nodes (as in consumer electronics) cannot be used in such ICs. Hence, the power & area consumption is of significant concern. The primary aim of the project is to develop custom, novel ultra-low power digital cells for efficient signal processing and communication circuits for miniature wireless medical implants. This goal fits ideally with the ongoing IMPACT project (in the same group) that aims to develop rice-grain size bio-electronic sensor to monitor cancer tumors. This project will be able to use custom digital cells to optimize this tradeoff between data compression and transmission bandwidth in such a device. The researcher will interact with a multidisciplinary team working on the IMPACT project, including IC designers, physicist, biochemist and clinicians. The highly interdisciplinary work will consider the limitations of such an implant in terms of its sensor functionality and physiological acceptance before deriving the electrical specifications. The researcher will bring her extensive experience in designing low-power CMOS arithmetic and memory circuits to this project. This will complement the existing knowhow in bio-sensors and high-performance sensor interfaces already being developed at the host group. She will receive training in multiple aspects of mixed-signal IC design, full-chip characterization and bio-electronic systems. The host organization will also benefit from her teaching and mentoring experiences.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UPDWMI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UPDWMI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More