Opendata, web and dolomites

UPDWMI SIGNED

Ultra-low Power Digital circuits for Wireless Medical Implants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UPDWMI project word cloud

Explore the words cloud of the UPDWMI project. It provides you a very rough idea of what is the project "UPDWMI" about.

optimize    silicon    circuits    grain    tumors    signal    receive    size    sensitive    nervous    memory    area    cancer    multiple    rice    located    benefit    nanotechnology    ongoing    knowhow    monitor    medical    digital    interact    cells    hence    acceptance    right    circuit    sensors    chip    implants    wireless    interfaces    clinicians    she    organization    designers    extensive    physiological    limitations    training    group    small    designing    organs    source    interdisciplinary    characterization    mixed    device    healthcare    electrical    experiences    ideally    toxicity    sensor    power    human    made    ics    interfacing    technologies    consumption    host    components    team    implant    teaching    compression    biochemist    specifications    advances    performance    communication    analog    full    bandwidth    multidisciplinary    physicist    mentoring    arithmetic    fits    primary    transmission    miniature    electronics    custom    data    deriving    determines    nodes    efficient    tradeoff    body    complement    bio    electronic    cmos    researcher    ic    ultra   

Project "UPDWMI" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EDINBURGH 

Organization address
address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL
website: www.ed.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-15   to  2020-09-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) coordinator 195˙454.00

Map

 Project objective

Advances in nanotechnology have made it possible to implant ultra-small electronic sensors in the human body. Interfacing with organs and nervous system, these devices will be a key part of future healthcare technologies. One of the most important components in such a device is the electronic integrated circuit (IC) located right at the signal source. This determines the overall power consumption and size of an implant. However, due to the need for sensitive analog circuits and toxicity concerns, very advanced silicon technology nodes (as in consumer electronics) cannot be used in such ICs. Hence, the power & area consumption is of significant concern. The primary aim of the project is to develop custom, novel ultra-low power digital cells for efficient signal processing and communication circuits for miniature wireless medical implants. This goal fits ideally with the ongoing IMPACT project (in the same group) that aims to develop rice-grain size bio-electronic sensor to monitor cancer tumors. This project will be able to use custom digital cells to optimize this tradeoff between data compression and transmission bandwidth in such a device. The researcher will interact with a multidisciplinary team working on the IMPACT project, including IC designers, physicist, biochemist and clinicians. The highly interdisciplinary work will consider the limitations of such an implant in terms of its sensor functionality and physiological acceptance before deriving the electrical specifications. The researcher will bring her extensive experience in designing low-power CMOS arithmetic and memory circuits to this project. This will complement the existing knowhow in bio-sensors and high-performance sensor interfaces already being developed at the host group. She will receive training in multiple aspects of mixed-signal IC design, full-chip characterization and bio-electronic systems. The host organization will also benefit from her teaching and mentoring experiences.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UPDWMI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UPDWMI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More