Opendata, web and dolomites

OSCILLOGEL SIGNED

An enzyme-based self-oscillating gel

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OSCILLOGEL project word cloud

Explore the words cloud of the OSCILLOGEL project. It provides you a very rough idea of what is the project "OSCILLOGEL" about.

oscillatory    arise    interdependence    found    enzyme    reactants    biological    versa    maintained    pull    urea    though    continual    big    individually    motility    unreacted    eliminated    structural    self    power    release    chemoresponsive    shrinks    gel    rigid    stress    insufficiently    opening    force    regulatory    lacking    property    itself    reactions    clue    mostly    material    oscillation    living    inconvenience    autonomous    chemical    fresh    reaction    stimuli    counterintuitive    constant    lowers    off    biologically    morphogenesis    flow    periodic    immobilized    valve    swells    subsystems    transport    mechanics    feedback    lacks    external    linked    underlying    uniform    obtain    chemistry    exploring    closing    popular    elasticity    corresponding    hydrogel    first    source    inorganic    periodicity    urease    operated    environment    mechanical    diffusion    motion    continuous    synthetic    functions    vice    models    oscillator    wish    coupled    load    merely    components    differentiation    energy    understand    forwards    generally    emerges    engineer    responsive    biocompatible    biochemistry    mechano    collective    loops    intrinsic    lifts    dynamic    biochemical    fit    attributed    drive   

Project "OSCILLOGEL" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 183˙454.00

Map

 Project objective

Self-oscillation is a periodic motion generated and maintained by a source of power that lacks the corresponding periodicity. In living systems several periodic motility processes or structural differentiation arise with no on-off stimuli, merely under the continual flow-in and flow-out of material and energy. The popular synthetic dynamic models use oscillatory chemical reactions to drive the system, though in most real cases no underlying biochemical oscillator is found. One clue is in the interdependence of chemistry and mechanics (stress, elasticity, or transport). Periodicity is counterintuitive because it cannot be attributed to any of the subsystems individually: this property emerges only through the collective behaviour of the components, as a systems-level property. To understand biological systems, we need to understand how these properties and functions are generated and controlled. Feedback-loops between chemical and mechanical processes are intrinsic in morphogenesis, though mechano-chemical feedback is generally still lacking in synthetic systems. I build coupled reaction-diffusion-mechanics systems, where a chemoresponsive hydrogel swells and shrinks (and, e.g., lifts and lowers a load) in a constant and uniform unreacted chemical environment, with no external stimuli. The chemistry is not oscillatory in itself, that is, if the gel is rigid or insufficiently responsive. Previous systems (mostly with inorganic reactions) operated under the continuous flow of fresh reactants. This inconvenience would be eliminated by making a big step forwards to biochemistry, where the reaction is linked to an enzyme immobilized in the gel. First we wish to demonstrate such a biocompatible system with the urease-urea reaction. After exploring the operating conditions, this autonomous system could fit to engineer regulatory functions by opening-closing a valve or to obtain biologically meaningful chemical responses by applying a force (pull, release) and vice versa.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OSCILLOGEL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OSCILLOGEL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More