Opendata, web and dolomites

OSCILLOGEL SIGNED

An enzyme-based self-oscillating gel

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OSCILLOGEL project word cloud

Explore the words cloud of the OSCILLOGEL project. It provides you a very rough idea of what is the project "OSCILLOGEL" about.

continuous    mechanical    urease    intrinsic    dynamic    lacking    interdependence    lifts    vice    differentiation    inconvenience    rigid    fit    continual    transport    models    opening    external    emerges    living    mechanics    stimuli    unreacted    maintained    first    flow    energy    synthetic    hydrogel    merely    subsystems    power    wish    closing    understand    operated    elasticity    force    engineer    coupled    regulatory    environment    though    drive    attributed    eliminated    source    swells    obtain    chemical    arise    biochemical    collective    inorganic    off    load    underlying    oscillation    counterintuitive    generally    big    oscillatory    chemoresponsive    immobilized    morphogenesis    biocompatible    structural    itself    versa    biological    clue    autonomous    diffusion    self    forwards    uniform    lacks    lowers    property    motility    material    insufficiently    reactions    gel    constant    biochemistry    reactants    individually    mechano    functions    shrinks    popular    release    biologically    exploring    components    enzyme    oscillator    responsive    linked    mostly    periodic    urea    loops    reaction    found    valve    periodicity    motion    pull    stress    fresh    corresponding    chemistry    feedback   

Project "OSCILLOGEL" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF SHEFFIELD 

Organization address
address: FIRTH COURT WESTERN BANK
city: SHEFFIELD
postcode: S10 2TN
website: www.shef.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF SHEFFIELD UK (SHEFFIELD) coordinator 183˙454.00

Map

 Project objective

Self-oscillation is a periodic motion generated and maintained by a source of power that lacks the corresponding periodicity. In living systems several periodic motility processes or structural differentiation arise with no on-off stimuli, merely under the continual flow-in and flow-out of material and energy. The popular synthetic dynamic models use oscillatory chemical reactions to drive the system, though in most real cases no underlying biochemical oscillator is found. One clue is in the interdependence of chemistry and mechanics (stress, elasticity, or transport). Periodicity is counterintuitive because it cannot be attributed to any of the subsystems individually: this property emerges only through the collective behaviour of the components, as a systems-level property. To understand biological systems, we need to understand how these properties and functions are generated and controlled. Feedback-loops between chemical and mechanical processes are intrinsic in morphogenesis, though mechano-chemical feedback is generally still lacking in synthetic systems. I build coupled reaction-diffusion-mechanics systems, where a chemoresponsive hydrogel swells and shrinks (and, e.g., lifts and lowers a load) in a constant and uniform unreacted chemical environment, with no external stimuli. The chemistry is not oscillatory in itself, that is, if the gel is rigid or insufficiently responsive. Previous systems (mostly with inorganic reactions) operated under the continuous flow of fresh reactants. This inconvenience would be eliminated by making a big step forwards to biochemistry, where the reaction is linked to an enzyme immobilized in the gel. First we wish to demonstrate such a biocompatible system with the urease-urea reaction. After exploring the operating conditions, this autonomous system could fit to engineer regulatory functions by opening-closing a valve or to obtain biologically meaningful chemical responses by applying a force (pull, release) and vice versa.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OSCILLOGEL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OSCILLOGEL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More