Opendata, web and dolomites

StrEnQTh SIGNED

Strong Entanglement in Quantum many-body Theory

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 StrEnQTh project word cloud

Explore the words cloud of the StrEnQTh project. It provides you a very rough idea of what is the project "StrEnQTh" about.

tensor    generation    synergies    entangled    difficult    breakthrough    becomes    radically    force    witnessing    collisions    mixed    entanglement    fruitful    ion    classes    despite    theories    dynamics    resource    toolset    preliminary    gauge    theory    strenqth    measuring    reversing    concentrating    tractable    accessible    designing    correlations    builds    motivated    eludes    body    adopts    potentials    network    dissipation    platforms    thermalization    experimental    time    quantum    frontier    interface    introducing    minimize    progress    implementing    works    investigations    hard    phenomena    topological    questions    unequal    poorly    theoretical    elucidate    paradigm    tools    goals    improvements    relevance    risks    particle    detection    expertise    untapped    heavy    setups    infinitely    amo    calculation    correlators    framework    modern    optics    physics    quantification    fundamental    correlated    versatility    hydrodynamization    inherently    blocking   

Project "StrEnQTh" data sheet

The following table provides information about the project.

Coordinator
RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG 

Organization address
address: SEMINARSTRASSE 2
city: HEIDELBERG
postcode: 69117
website: www.uni-heidelberg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙499˙563 €
 EC max contribution 1˙499˙563 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG DE (HEIDELBERG) coordinator 1˙499˙563.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

This project addresses a frontier of modern quantum physics, entanglement in strongly correlated many-particle systems. At present, despite its importance for fundamental phenomena and potential applications, many-body entanglement is poorly understood theoretically and eludes experimental investigations. Three fundamental challenges are blocking further progress: there are infinitely many classes of many-body entangled states, the calculation of real-time quantum dynamics is inherently difficult, and the quantification of many-particle entanglement remains a hard experimental challenge.

StrEnQTh adopts a radically novel approach to force a breakthrough in each of these challenges, concentrating on specific targets motivated by next-generation AMO setups. 1. By designing a dedicated quantum resource theory, I will establish a novel framework for topological long-range entanglement. 2. By implementing crucial improvements on a tensor-network method, thermalization dynamics in gauge theories becomes tractable, especially hydrodynamization after heavy-ion collisions. 3. By exploiting the untapped potentials of time-reversing quantum dynamics and measuring high-order correlations, mixed-state entanglement becomes accessible. Further, by introducing a new paradigm of detection by dissipation, unequal-time correlators become available as a novel toolset for witnessing many-body entanglement. To achieve these goals, StrEnQTh builds on (i) my expertise at the interface of quantum optics and information with quantum many-body theory; (ii) previous works and preliminary results that minimize risks; (iii) fruitful synergies between the goals; (iv) a high versatility of the developed methods.

The impact of this project will reach far beyond its immediate field. It will elucidate fundamental theoretical questions of relevance to strongly correlated matter at large, and it will deliver a new generation of detection tools that can find application in other platforms.

 Publications

year authors and title journal last update
List of publications.
2019 Lukas M. Sieberer, Tobias Olsacher, Andreas Elben, Markus Heyl, Philipp Hauke, Fritz Haake, Peter Zoller
Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top
published pages: , ISSN: 2056-6387, DOI: 10.1038/s41534-019-0192-5
npj Quantum Information 5/1 2020-02-05
2019 Philipp Hauke, Helmut G. Katzgraber, Wolfgang Lechner, Hidetoshi Nishimori, William D. Oliver
Perspectives of quantum annealing: Methods and implementations
published pages: , ISSN: , DOI:
2020-02-05
2019 Alexander Mil, Torsten V. Zache, Apoorva Hegde, Andy Xia, Rohit P. Bhatt, Markus K. Oberthaler, Philipp Hauke, Jürgen Berges, Fred Jendrzejewski
Realizing a scalable building block of a U(1) gauge theory with cold atomic mixtures
published pages: , ISSN: , DOI:
2020-02-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRENQTH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRENQTH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperCube (2020)

HyperCube: Gram scale production of ferrite nanocubes and thermo-responsive polymer coated nanocubes for medical applications and further exploitation in other hyperthermia fields

Read More  

HBPTC (2019)

Hydrogen Bonding Phase Transfer Catalysis

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More