Opendata, web and dolomites

WINDMIL RT-DT SIGNED

An autonomous Real-Time Decision Tree framework for monitoring and diagnostics on wind turbines

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 WINDMIL RT-DT project word cloud

Explore the words cloud of the WINDMIL RT-DT project. It provides you a very rough idea of what is the project "WINDMIL RT-DT" about.

quantify    architecture    maintenance    world    hardware    critical    anomalies    carry    software    components    data    solution    total    tree    emergency    patterns    investments    insurers    machine    telemetry    running    creates    lifespan    pilot    mechanical    players    scheduling    emissions    root    wind    hindering    companies    risk    commercialisation    faults    detecting    farm    proof    time    few    energy    lies    innovative    repairs    diagnostics    difficult    innovation    offshore    reduce    algorithm    installation    turbine    service    proposition    monitoring    business    position    back    designed    autonomous    of    deploying    actions    market    manufacturers    alarmingly    selling    customers    operation    prototype    green    installations    operators    object    co2    learning    decision    extremely    collaborators    context    ourselves    damage    tool    first    turbines    errors    industry    structural    evident    classification    infrastructure    abnormal    oriented    smart    consists    platform    trace    believe    implementing    wt    power   

Project "WINDMIL RT-DT" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 148˙890 €
 EC max contribution 148˙890 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 148˙890.00

Map

 Project objective

Operation & Maintenance (O&M) costs may account for 30 % of the total cost of energy for offshore wind power. Alarmingly, only after a few years of installation, offshore wind turbines (WT) may need emergency repairs. They also feature an extremely short lifespan hindering investments to green energy, effectively designed to reduce CO2 emissions. We have designed real-time monitoring and diagnostics platform in the context of operation and maintenance scheduling of WT components. Using this architecture, we can quantify the risk of future failure of a given component and trace back the root-cause of the failure. This is business-critical information for Energy Companies and Wind Farm Operators. The platform consists of an autonomous software-hardware solution, implementing an Object Oriented Real-Time Decision Tree learning algorithm for smart monitoring and diagnostics of structural and mechanical WT components. The innovative concept lies in running WT telemetry data through a machine learning based decision tree classification algorithm in real-time for detecting faults, errors, damage patterns, anomalies and abnormal operation. We believe our innovation creates evident value and will raise great interest as decision-support tool for WT manufacturers, Wind Farm Operators, Service Companies and Insurers. In this project, we will carry out pre-commercialisation actions to position ourselves in the market, provide unique selling proposition for future customers as well as raise interest among potential R&D collaborators and pilot customers. We will also establish technology proof of concept for the platform. For the first time, we are applying our design in difficult-to-access energy infrastructure installations and deploying it on a real-world prototype wind turbine. The project will be carried out with technical and commercialisation support from key players within the wind energy industry.

 Publications

year authors and title journal last update
List of publications.
2020 Imad Abdallah, Konstantinos Tatsis, Eleni Chatzi
Unsupervised local cluster-weighted bootstrap aggregating the output from multiple stochastic simulators
published pages: 106876, ISSN: 0951-8320, DOI: 10.1016/j.ress.2020.106876
Reliability Engineering & System Safety 199 2020-04-15

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "WINDMIL RT-DT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "WINDMIL RT-DT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PGErepro (2019)

How to break Mendel’s laws? The role of sexual conflict in the evolution of unusual transmission genetics

Read More  

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More