Opendata, web and dolomites

BioInspired_SolarH2 SIGNED

Engineering Bio-Inspired Systems for the Conversion of Solar Energy to Hydrogen

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BioInspired_SolarH2" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA 

Organization address
address: AVENIDA PAISSOS CATALANS 16
city: TARRAGONA
postcode: 43007
website: www.iciq.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2024-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO PRIVADA INSTITUT CATALA D'INVESTIGACIO QUIMICA ES (TARRAGONA) coordinator 1˙500˙000.00

Map

 Project objective

With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.

The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.

Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.

Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOINSPIRED_SOLARH2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOINSPIRED_SOLARH2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MINGRAFT (2020)

Biomineralizing coatings for maxillofacial implants

Read More  

INTERACT (2019)

Phylogenetic association mapping and its application to secondary metabolite variation in Brassicaceae species

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More