Opendata, web and dolomites

DEFTPORE SIGNED

Deformation control on flow and transport in soft porous media

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DEFTPORE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙482˙862 €
 EC max contribution 1˙482˙862 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙482˙862.00

Map

 Project objective

Fluid flows through soft porous media are ubiquitous across nature and industry, from methane bubbles rising through lakebed and seabed sediments to nutrient transport in living cells and tissues to the manufacturing of paper products and many composites. Despite their ubiquity, flow and transport in these systems remain at the frontier of our ability to measure and model. A defining feature of soft porous media is that they can experience deformations that transform the pore structure. This has profound implications for the transport and mixing of solutes and the simultaneous flow of multiple fluid phases, both of which are strongly coupled to the pore structure. The goal of this project is to shed new light on flow and transport in soft porous media by studying a series of three canonical flow problems (tracer transport, miscible viscous fingering, and two-phase flow) across soft adaptations of three classical model systems (a soft-walled Hele Shaw cell, a quasi-2D packing of soft beads, and a cylindrical 3D “core” of soft beads). These flow problems and model systems have been thoroughly studied in the context of stiff porous media, allowing us to leverage decades of previous work and focus exclusively on the new behaviour introduced by “softness”. We will collect an extensive set of new, high-resolution experimental observations in each of these model systems, and we will reconcile these observations with mathematical models based on the traditional approach of upscaled constitutive functions. By updating this traditional approach to account for deformation, we will provide a new, pragmatic class of continuum models that capture the leading-order features of flow and transport in soft porous media. Our results will jumpstart the field of flow and transport in soft porous media, breaking open a vast new realm of research questions and applications around understanding, predicting, and controlling these complex systems.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEFTPORE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEFTPORE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

EllipticPDE (2019)

Regularity and singularities in elliptic PDE's: beyond monotonicity formulas

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More