Opendata, web and dolomites

3D-PXM SIGNED

3D Piezoresponse X-ray Microscopy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "3D-PXM" data sheet

The following table provides information about the project.

Coordinator
DANMARKS TEKNISKE UNIVERSITET 

Organization address
address: ANKER ENGELUNDSVEJ 1 BYGNING 101 A
city: KGS LYNGBY
postcode: 2800
website: www.dtu.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 1˙496˙941 €
 EC max contribution 1˙496˙941 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) coordinator 1˙496˙941.00

Map

 Project objective

Polar materials, such as piezoelectrics and ferroelectrics are essential to our modern life, yet they are mostly developed by trial-and-error. Their properties overwhelmingly depend on the defects within them, the majority of which are hidden in the bulk. The road to better materials is via mapping these defects, but our best tool for it – piezoresponse force microscopy (PFM) – is limited to surfaces. 3D-PXM aims to revolutionize our understanding by measuring the local structure-property correlations around individual defects buried deep in the bulk. This is a completely new kind of microscopy enabling 3D maps of local strain and polarization (i.e. piezoresponse) with 10 nm resolution in mm-sized samples. It is novel, multi-scale and fast enough to capture defect dynamics in real time. Uniquely, it is a full-field method that uses a synthetic-aperture approach to improve both resolution and recover the image phase. This phase is then quantitatively correlated to local polarization and strain via a forward model. 3D-PXM combines advances in X-Ray optics, phase recovery and data analysis to create something transformative. In principle, it can achieve spatial resolution comparable to the best coherent X-Ray microscopy methods while being faster, used on larger samples, and without risk of radiation damage. For the first time, this opens the door to solving how defects influence bulk properties under real-life conditions. 3D-PXM focuses on three types of defects prevalent in polar materials: grain boundaries, dislocations and polar nanoregions. Individually they address major gaps in the state-of-the-art, while together making great strides towards fully understanding defects. This understanding is expected to inform a new generation of multi-scale models that can account for a material’s full heterogeneity. These models are the first step towards abandoning our tradition of trial-and-error, and with this comes the potential for a new era of polar materials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "3D-PXM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "3D-PXM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

GTBB (2019)

General theory for Big Bayes

Read More