Opendata, web and dolomites


Fundamentals of Hydrogen in Structural Metals at the Atomic Scale

Total Cost €


EC-Contrib. €






 HydMet project word cloud

Explore the words cloud of the HydMet project. It provides you a very rough idea of what is the project "HydMet" about.

etching    fracture    wake    predictability    significantly    tip    light    transfers    limited    electromobility    service    ni    dislocations    microstructure    ultra    cracks    specimen    materials    significance    consume    interfaces    amount    micro    efficient    involvement    material    wind    renewable    atom    despite    2d    ing    2h    atomic    damage    location    microscopy    clusters    underlying    enormous    fundamentals    little    crack    rational    power    influences    experiments    team    pi    energy    charging    generation    failures    contribution    3d    resistant    1h    transport    fe    0d    systematically    playing    fundamentally    life    combined    traps    protection    metals    storage    plasticity    cryo    strength    background    plastic    tracers    white    shed    savings    1d    mechanisms    probe    mechanics    direct    clarify    plays    economic    commercial    inherently    penetration    vacancies    detection    phased    made    tomography    usability    enhanced   

Project "HydMet" data sheet

The following table provides information about the project.


Organization address
postcode: 91054

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙497˙959 €
 EC max contribution 1˙497˙959 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-12-01   to  2023-11-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

H is an element that plays an important role in the production and efficient usage of energy as it significantly influences the way we produce and consume energy: In high-strength materials, the usability and service life is limited by H induced failure. These materials are key in transport systems, wind power and H storage. Despite the enormous economic significance, little is known fundamentally about the underlying damage mechanisms, which are inherently playing out on the atomic scale.

The PI’s team will use atom probe tomography, an atomic scale 3D microscopy method to systematically analyse the location and pathways of H in the microstructure and shed light on damage mechanisms in Fe and Ni based materials. This will include vacancies/clusters (0D), dislocations (1D), interfaces (2D) and second phased (3D). The approach will be combined with micro-mechanics to investigate the involvement of H in fracture behaviour. We will measure the amount of H at dislocations required for enhanced plasticity, in the plastic wake of a crack and at the crack tip. In production materials, we will determine the amount of H at identified traps after processing as well as penetration pathways into the material. Finally, we will clarify the contribution of H to a important problem for wind power generation: white-etching cracks.

These experiments are now made possible in a commercial atom probe by using 2H (D) charging combined with cryo specimen transfers to avoid H loss. In the project, the team will go a step further and build an atom probe with ultra-low H background to enable the direct detection of 1H, enabling analysis without tracers.

The resulting knowledge will greatly enhance our knowledge on the fundamentals of H in metals at the atomic scale. This will lead to increased predictability of failures, the rational design of H resistant high strength materials and protection measures and with it great cost savings especially in renewable energy generation and electromobility.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYDMET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYDMET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Life-Inspired (2019)

Life-inspired complex molecular systems controlled by enzymatic reaction networks

Read More  

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More  

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  
lastchecktime (2021-05-07 5:09:20) correctly updated