Opendata, web and dolomites

BiocatSusChem SIGNED

Biocatalysis for Sustainable Chemistry – Understanding Oxidation/Reduction of Small Molecules by Redox Metalloenzymes via a Suite of Steady State and Transient Infrared Electrochemical Methods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BiocatSusChem project word cloud

Explore the words cloud of the BiocatSusChem project. It provides you a very rough idea of what is the project "BiocatSusChem" about.

carbon    generation    propelling    small    many    probe    sites    global    chemistry    choreographed    utilisation    attempts    generate    substrate    solved    dihydrogen    relay    biomimetic    amino    follow    reactants    precise    environment    binding    bio    mid    monoxide    ir    tools    stability    situ    triggered    catalyse    formate    electron    develops    uncovering    reproduce    acids    fuels    suited    transformation    nitrogenase    accessible    central    catalytic    molecule    catalysts    protonation    chains    nickel    steady    introducing    multicentre    spectroscopy    blocks    chemical    sustainable    proton    dinitrogen    experimental    abundant    selectivity    bonds    reveal    metalloenzyme    ammonia    unified    turnover    largely    strength    infrared    suite    microorganisms    mechanisms    catalysis    inspired    understand    inside    molybdenum    energy    structural    metalloenzymes    transient    coordinated    metals    ideally    events    building    biological    models    activation    inhibitors    finely    active    nature    iron    dioxide    failed    reactions    enzymes    hydrogenase    transfer    electrochemically    dehydrogenase    ambient    report    redox    ways    biology    necessarily   

Project "BiocatSusChem" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙997˙286 €
 EC max contribution 1˙997˙286 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙997˙286.00

Map

 Project objective

Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOCATSUSCHEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOCATSUSCHEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More  

TRUST (2018)

Truth and Semantics

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More