Opendata, web and dolomites

BiocatSusChem SIGNED

Biocatalysis for Sustainable Chemistry – Understanding Oxidation/Reduction of Small Molecules by Redox Metalloenzymes via a Suite of Steady State and Transient Infrared Electrochemical Methods

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BiocatSusChem project word cloud

Explore the words cloud of the BiocatSusChem project. It provides you a very rough idea of what is the project "BiocatSusChem" about.

suite    solved    small    ammonia    redox    mechanisms    models    metalloenzymes    electrochemically    choreographed    proton    building    inhibitors    strength    catalysts    dioxide    monoxide    propelling    infrared    metalloenzyme    biomimetic    inspired    global    substrate    microorganisms    accessible    spectroscopy    transient    relay    introducing    structural    active    dinitrogen    suited    bio    metals    acids    multicentre    molecule    largely    reactants    molybdenum    ideally    many    coordinated    understand    catalysis    dihydrogen    develops    carbon    events    nickel    chemical    nature    chains    turnover    protonation    steady    abundant    attempts    finely    unified    generation    transfer    uncovering    experimental    chemistry    amino    energy    generate    reactions    utilisation    ways    report    electron    formate    bonds    follow    ir    selectivity    fuels    reveal    probe    tools    reproduce    activation    blocks    inside    environment    iron    transformation    situ    biological    sites    precise    enzymes    catalyse    necessarily    nitrogenase    central    ambient    biology    failed    sustainable    hydrogenase    catalytic    triggered    dehydrogenase    binding    stability    mid   

Project "BiocatSusChem" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙997˙286 €
 EC max contribution 1˙997˙286 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙997˙286.00

Map

 Project objective

Many significant global challenges in catalysis for energy and sustainable chemistry have already been solved in nature. Metalloenzymes within microorganisms catalyse the transformation of carbon dioxide into simple carbon building blocks or fuels, the reduction of dinitrogen to ammonia under ambient conditions and the production and utilisation of dihydrogen. Catalytic sites for these reactions are necessarily based on metals that are abundant in the environment, including iron, nickel and molybdenum. However, attempts to generate biomimetic catalysts have largely failed to reproduce the high activity, stability and selectivity of enzymes. Proton and electron transfer and substrate binding are all finely choreographed, and we do not yet understand how this is achieved. This project develops a suite of new experimental infrared (IR) spectroscopy tools to probe and understand mechanisms of redox metalloenzymes in situ during electrochemically-controlled steady state turnover, and during electron-transfer-triggered transient studies. The ability of IR spectroscopy to report on the nature and strength of chemical bonds makes it ideally suited to follow the activation and transformation of small molecule reactants at metalloenzyme catalytic sites, binding of inhibitors, and protonation of specific sites. By extending to the far-IR, or introducing mid-IR-active probe amino acids, redox and structural changes in biological electron relay chains also become accessible. Taking as models the enzymes nitrogenase, hydrogenase, carbon monoxide dehydrogenase and formate dehydrogenase, the project sets out to establish a unified understanding of central concepts in small molecule activation in biology. It will reveal precise ways in which chemical events are coordinated inside complex multicentre metalloenzymes, propelling a new generation of bio-inspired catalysts and uncovering new chemistry of enzymes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOCATSUSCHEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOCATSUSCHEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

THERMONANO (2018)

Nanoassemblies for the subcutaneous self-administration of anticancer drugs

Read More  

EXTREME (2020)

The Epistemology and Ethics of Fundamentalism

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More