Opendata, web and dolomites

ImmunoStem SIGNED

Dissecting and Overcoming Innate Immune Barriers for Therapeutically Efficient Hematopoietic Stem Cell Gene Engineering

Total Cost €


EC-Contrib. €






 ImmunoStem project word cloud

Explore the words cloud of the ImmunoStem project. It provides you a very rough idea of what is the project "ImmunoStem" about.

host    plethora    stem    viral    manipulating    sensors    exportable    therapies    crosstalk    efficiencies    direct    expose    vivo    outcomes    technologies    immune    genetic    restrict    iceberg    effectors    levels    lentiviral    vectors    edge    implications    small    individual    sensing    therapy    mere    single    broad    gene    innate    mitigate    ground    innovative    action    cells    potently    builds    successful    prevent    blocks    instruct    culture    cutting    progress    ex    mechanisms    trials    recognition    nucleic    completion    autoimmune    breaking    prolonged    counteract    hematopoietic    potentially    editing    manipulation    hampering    molecules    hsc    primitive    platforms    engineering    diseases    thorough    cell    acid    first    nevertheless    compartment    hurdle    disorders    vector    significantly    clinically    sustainable    pathogen    discovered    doses    variability    clinical    human    transfer    broadly    modification    efficiency    components    tip    antiviral    efficient    fight    infectious    paradigms   

Project "ImmunoStem" data sheet

The following table provides information about the project.


Organization address
address: VIA OLGETTINA 60
city: MILANO
postcode: 20132

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙994˙375 €
 EC max contribution 1˙994˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    OSPEDALE SAN RAFFAELE SRL IT (MILANO) coordinator 1˙994˙375.00


 Project objective

The low gene manipulation efficiency of human hematopoietic stem cells (HSC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Indeed, high vector doses and prolonged ex vivo culture are still required for clinically relevant levels of gene transfer even with the most established lentiviral vector-based delivery platforms. Current and emerging gene transfer and editing technologies expose HSC to components potentially recognized by host antiviral factors and nucleic acid sensors that likely restrict their genetic engineering and contribute to broad individual variability in clinical outcomes observed in recent gene therapy trials. Nevertheless, specific effectors are yet to be identified in HSC. We have recently identified an antiviral factor that potently blocks gene transfer in HSC and have discovered small molecules that efficiently counteract it. This is the first example of how manipulating a single host factor can significantly impact gene transfer efficiencies in HSC but likely represents the mere tip of the iceberg of the plethora of innate sensing mechanisms potentially hampering genetic manipulation of this primitive cell compartment. This proposal aims to identify the antiviral factors and innate sensing pathways that prevent efficient modification of HSC and to mitigate their effects using methods developed through a thorough understanding of their mechanisms of action. My approach builds on the innovative concept that understanding the crosstalk between HSC and viral vectors will instruct us on which immune sensors and effectors to avoid and how, with direct implications for all gene engineering technologies. Successful completion of this project will deliver broadly exportable novel paradigms of innate pathogen recognition that will allow ground-breaking progress in the development of cutting-edge cell and gene therapies and to fight infectious and autoimmune diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMMUNOSTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IMMUNOSTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  


The Power of Randomness and Continuity in Submodular Optimization

Read More