Opendata, web and dolomites

mitoUPR SIGNED

Cellular modulation by the mitochondrial unfolded protein response

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 mitoUPR project word cloud

Explore the words cloud of the mitoUPR project. It provides you a very rough idea of what is the project "mitoUPR" about.

compartments    mammalian    questions    acutely    severe    carries    regulation    balance    protein    direct    function    unfolded    influence    signal    microscopy    granules    central    adjustments    unknown    notably    holds    uprmt    human    environment    inducing    spectrometry    endocrine    cancer    proliferation    composition    metabolism    uncover    activate    disease    combined    exerts    ought    modulating    generation    proteostasis    layer    misfolding    translation    energy    rna    neurodegenerative    neighboring    environments    worms    induce    paracrine    restore    sequencing    newly    cutting    edge    ipsc    tools    possibility    treatment    stress    organism    mass    cellular    cytosol    additionally    folding    extensive    therapeutic    cytosolic    editing    mechanisms    strikingly    mitochondria    model    undescribed    cells    mitochondrial    robustness    autonomous    organismal    gene    cell    signaling    implications    homeostasis    quantitative    modification    poorly    diseases   

Project "mitoUPR" data sheet

The following table provides information about the project.

Coordinator
JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN 

Organization address
address: THEODOR W ADORNO PLATZ 1
city: FRANKFURT AM MAIN
postcode: 60323
website: www.uni-frankfurt.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙437˙500 €
 EC max contribution 1˙437˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    JOHANN WOLFGANG GOETHE-UNIVERSITATFRANKFURT AM MAIN DE (FRANKFURT AM MAIN) coordinator 1˙437˙500.00

Map

 Project objective

Mitochondrial function is central for cellular metabolism and energy balance. However, many diseases, including cancer and neurodegenerative diseases, affect mitochondrial function and proteostasis. Upon mitochondrial protein misfolding, mitochondria activate the mitochondrial unfolded protein response (UPRmt) to restore proteostasis, a poorly characterized pathway in mammalian cells. Notably, the effects of the UPRmt on its direct environment – mitochondria – and on cytosolic homeostasis remain unknown. Strikingly, non-cell autonomous signaling of metabolism and folding state has been described in recent years, particularly in worms. However, the possible role of UPRmt in such processes is undescribed. Using newly available tools to acutely induce the UPRmt in mammalian cells, combined with cutting-edge quantitative mass spectrometry, microscopy, next generation sequencing, and gene editing approaches, we propose to address these important open questions by studying the influence UPRmt exerts on the environments of i) mitochondria (including to study the composition and regulation of RNA granules), ii) cytosol (adjustments of translation, metabolism, and proliferation) and iii) neighboring cells (modification by non-cell autonomous signaling). Additionally, we aim to develop an iPSC-based UPRmt model. On cellular and organismal level, there ought to be mechanisms to signal changes in metabolism and proteostasis to increase robustness in neighboring environments. Studying these effects will be crucial for a better understanding of human disease and carries severe implications: i) the possibility of therapeutic treatment by modulating neighboring compartments or cells and ii) the possibility that diseases inducing the UPRmt could have unknown paracrine and endocrine effects on the organism. This proposal holds the potential to uncover a novel layer of regulation of cellular stress with an extensive influence on our understanding of the UPRmt and disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MITOUPR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MITOUPR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More