Opendata, web and dolomites

NeuCoDe SIGNED

Neural & Computational Principles of Multisensory Integration during Active Sensing and Decision-Making

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NeuCoDe" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00

Map

 Project objective

Perceptual decisions rely on the integration of information from the environment, which typically involves the combination of stimuli from different senses. The quality of sensory evidence depends highly on our actions that affect how we acquire information from the external world. Importantly, the processing of this multisensory information requires the interaction of multiple neural processes over time. However, the neural mechanisms underlying this complex human behaviour remain elusive. In this project, I will employ a novel active sensing paradigm coupled with state-of-the-art neuroimaging and computational modelling to probe how the brain samples, processes and integrates multisensory information in order to make fast and accurate decisions. I will devise a reaction-time task where human subjects will actively sense and discriminate the amplitude of two texture stimuli a) using only visual information, b) using only haptic information and c) combining the two sensory cues, while electroencephalograms (EEG) will be recorded. To study this, I will develop a novel computational methodology for the joint analysis of brain activity (EEG), sensorimotor signals (movement kinematics) and behavioural measurements (choice and response time). First, behavioural modelling will provide a mechanistic account of the constituent processes underlying decision fomation. Then, model predictions will inform the joint analysis of neural and sensorimotor signals, to characterize the neural and behavioural basis of active multi-sensing and decision-making. To achieve this, I will devise an information-theoretic methodology that quantifies a) the contribution of each sensory modality to perception and b) the interaction of their neural representations to drive perceptual decisions. Ultimately, this project will elucidate the brain networks involved in active multisensory decision-making and characterize their respective functional roles in behavioural performance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUCODE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUCODE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

VDGSEGUR (2019)

Gender Violence and Security in the Interoceanic Industrial Corridor of the Isthmus of Tehuantepec: A Critical Examination of Policies and Practices

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More