Opendata, web and dolomites

RNA-Rep SIGNED

Repeating cycles of chemically-driven RNA replication within model protocells

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RNA-Rep project word cloud

Explore the words cloud of the RNA-Rep project. It provides you a very rough idea of what is the project "RNA-Rep" about.

physically    re    rna    repeated    strands    renewed    annealing    multidisciplinary    permeable    supramolecular    temperature    strand    evolution    chemistry    biophysics    strength    stochastic    denatured    containing    acids    yield    enzymes    power    rounds    stand    unsolved    melted    temperatures    biochemistry    oligo    critical    stage    membranes    single    induce    extensive    original    chemical    protocellular    outcompetes    biology    simplistic    me    chemically    replication    training    structures    deciphering    subsequent    put    compartments    expertise    situ    slow    inhibiting    combines    optimise    partial    nucleotides    recover    fraction    prebiotic    solution    amplify    enzymatic    give    cycles    absence    encoded    effort    replicated    unexplored    monomers    separated    transition    place    science    darwinian    kinetically    separation    copying    membrane    genetically    organic    nucleic    leakage    onset    lipid    synthesis    impermeability    cooling    separate    duplex    feeding    activated    ultimately    melting    bilayer    living    excellent    defects    innovative    heating    template    emergence    amplification   

Project "RNA-Rep" data sheet

The following table provides information about the project.

Coordinator
UNITED KINGDOM RESEARCH AND INNOVATION 

Organization address
address: POLARIS HOUSE NORTH STAR AVENUE
city: SWINDON
postcode: SN2 1FL
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNITED KINGDOM RESEARCH AND INNOVATION UK (SWINDON) coordinator 224˙933.00

Map

 Project objective

Deciphering how nucleic acids replicated in the absence of genetically encoded enzymes is of critical importance to understanding the onset of Darwinian evolution. While much effort has been put into developing chemically-driven copying of RNA exploiting activated monomers, many unsolved issues stand in the way of achieving repeated cycles of non-enzymatic RNA replication. Non-enzymatic copying of a template strand results in the formation of an RNA duplex, which must then be denatured in order for subsequent rounds of replication to take place. Although RNA strands can be separated by heating, re-annealing kinetically outcompetes slow non-enzymatic copying, thus inhibiting RNA amplification. One unexplored solution to this problem is to physically separate melted strands of RNA so that re-annealing is not possible. Since all known living systems exploit lipid membranes, we propose to investigate whether protocellular compartments can facilitate the emergence of simplistic chemical systems that amplify RNA. Specifically, high temperatures are known to induce both RNA strand separation and bilayer defects, ultimately allowing for the partial leakage of RNA. If the transition temperature of the lipid membrane is higher than the melting temperature of the RNA, then subsequent slow cooling would recover the original impermeability of the membrane and give rise to a fraction of protocellular structures containing stochastic numbers of single RNA strands. At this stage, feeding with permeable activated short (oligo)nucleotides would lead to renewed copying of RNA. This highly original and multidisciplinary project combines the strength of organic and supramolecular chemistry to optimise prebiotic compartments with the power of in situ non-enzymatic RNA biochemistry to yield a project of excellent, innovative science that will exploit my expertise in protocellular systems while providing me extensive training in organic synthesis, chemical biology and biophysics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RNA-REP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RNA-REP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

MEM-ENTO (2020)

Tracing memory formation in a behaving animal: analysis of learning-induced morpho-functional plasticity along the bee’s olfactory system

Read More