Opendata, web and dolomites

COFFEE TERMINATED

Controlling and Observing Filaments For Enhanced memristive Elements

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 COFFEE project word cloud

Explore the words cloud of the COFFEE project. It provides you a very rough idea of what is the project "COFFEE" about.

experiments    demands    binary    filament    inspiration    bar    efforts    cycle    switching    experimental    imminent    efficiency    formulation    power    hardware    sthm    law    serious    resistive    chemical    geometric    variability    modify    neural    dramatically    seek    computing    fundamental    closer    neuromorphic    conductive    von    techniques    shortcomings    notable    expanding    microscopy    offers    perform    phenomenon    with    limitations    filamentary    physics    network    plasticity    visualize    benchmark    memristive    opposed    operando    data    demise    filaments    human    20th    modern    observing    utilize    scanning    transmission    tem    fabrication    moore    materials    thermal    move    electrode    burdens    engineering    analog    suffers    gained    hopes    behavior    architecture    imposed    computational    insights    practical    century    relies    memristors    enhanced    coffee    memory    variations    optimization    iterative    remarkable    device    technologies    neumann    brain    simulations    overcome    performance    arrays    electron    visualization    cross   

Project "COFFEE" data sheet

The following table provides information about the project.

Coordinator
IBM RESEARCH GMBH 

Organization address
address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803
website: www.zurich.ibm.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 203˙149 €
 EC max contribution 203˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH CH (RUESCHLIKON) coordinator 203˙149.00

Map

 Project objective

With modern data demands and computational burdens rapidly expanding, technology must quickly move beyond the traditional von Neumann architecture that has driven computational advances since the 20th century. Taking its inspiration from the remarkable plasticity and power efficiency of the human brain, neuromorphic computing offers a promising approach to overcome the fundamental limitations imposed by the von Neumann architecture and the imminent demise of Moore’s Law. One notable formulation of neuromorphic hardware relies on analog memory elements called memristors (resistive switching devices). While resistive switching is a well-known phenomenon, its implementation in neuromorphic computing currently suffers from several serious issues, including significant device-to-device variations, binary (as opposed to analog) switching and cycle-to-cycle variability. In COFFEE (Controlling and Observing Filaments For Enhanced memristive Elements), we seek to overcome these shortcomings by studying the fundamental materials physics of conductive filaments as well as through iterative and targeted device optimization efforts. We will utilize novel experimental techniques, including in operando transmission electron microscopy (TEM) and scanning thermal microscopy (SThM), to visualize the formation and behavior of conductive filaments in practical devices. Insights gained from filament visualization experiments will be used to modify device design through geometric, chemical, and electrode engineering in the hopes of improving device performance. Improved memristors will be used for the fabrication of cross-bar arrays to perform benchmark computational tasks in neural network hardware and for neural network simulations. Through the study of conductive filaments and targeted engineering efforts, the performance of filamentary memristors can likely be dramatically improved and their implementation in viable neuromorphic technologies can move closer to reality.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COFFEE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COFFEE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

MNSWLGM (2019)

An optofluidic platform based on liquid-gradient refractive index microlens for the isolation and quantification of extracellular vesicles

Read More