Opendata, web and dolomites

COFFEE TERMINATED

Controlling and Observing Filaments For Enhanced memristive Elements

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 COFFEE project word cloud

Explore the words cloud of the COFFEE project. It provides you a very rough idea of what is the project "COFFEE" about.

cross    utilize    physics    memristors    demise    neural    cycle    with    human    practical    engineering    filament    fundamental    hardware    sthm    techniques    efficiency    overcome    moore    electrode    geometric    computing    imposed    opposed    imminent    burdens    resistive    variations    plasticity    memristive    iterative    shortcomings    binary    network    neuromorphic    analog    computational    century    expanding    behavior    closer    transmission    dramatically    architecture    chemical    memory    insights    offers    enhanced    phenomenon    simulations    move    data    experiments    neumann    modify    visualization    formulation    operando    fabrication    bar    efforts    hopes    perform    limitations    visualize    notable    technologies    remarkable    law    performance    thermal    filamentary    benchmark    modern    power    demands    coffee    seek    von    conductive    optimization    filaments    inspiration    20th    experimental    electron    materials    device    suffers    microscopy    observing    gained    brain    variability    relies    tem    serious    switching    arrays    scanning   

Project "COFFEE" data sheet

The following table provides information about the project.

Coordinator
IBM RESEARCH GMBH 

Organization address
address: SAEUMERSTRASSE 4
city: RUESCHLIKON
postcode: 8803
website: www.zurich.ibm.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 203˙149 €
 EC max contribution 203˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-SE
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IBM RESEARCH GMBH CH (RUESCHLIKON) coordinator 203˙149.00

Map

 Project objective

With modern data demands and computational burdens rapidly expanding, technology must quickly move beyond the traditional von Neumann architecture that has driven computational advances since the 20th century. Taking its inspiration from the remarkable plasticity and power efficiency of the human brain, neuromorphic computing offers a promising approach to overcome the fundamental limitations imposed by the von Neumann architecture and the imminent demise of Moore’s Law. One notable formulation of neuromorphic hardware relies on analog memory elements called memristors (resistive switching devices). While resistive switching is a well-known phenomenon, its implementation in neuromorphic computing currently suffers from several serious issues, including significant device-to-device variations, binary (as opposed to analog) switching and cycle-to-cycle variability. In COFFEE (Controlling and Observing Filaments For Enhanced memristive Elements), we seek to overcome these shortcomings by studying the fundamental materials physics of conductive filaments as well as through iterative and targeted device optimization efforts. We will utilize novel experimental techniques, including in operando transmission electron microscopy (TEM) and scanning thermal microscopy (SThM), to visualize the formation and behavior of conductive filaments in practical devices. Insights gained from filament visualization experiments will be used to modify device design through geometric, chemical, and electrode engineering in the hopes of improving device performance. Improved memristors will be used for the fabrication of cross-bar arrays to perform benchmark computational tasks in neural network hardware and for neural network simulations. Through the study of conductive filaments and targeted engineering efforts, the performance of filamentary memristors can likely be dramatically improved and their implementation in viable neuromorphic technologies can move closer to reality.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COFFEE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COFFEE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More