Opendata, web and dolomites


Exploring Shortcuts for the Characterization of the Atmospheres of Planets similar to Earth

Total Cost €


EC-Contrib. €






Project "ESCAPE" data sheet

The following table provides information about the project.


Organization address
city: GENEVE
postcode: 1211

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 191˙149.00


 Project objective

The question of whether or not there is life elsewhere in the Universe has recently taken a giant leap forward with the detection of several nearby Earth-sized, temperate exoplanets. Future ground and space-based telescopes such as the European-Extremely Large Telescope, the James Webb Space Telescope and LUVOIR will theoretically be able to perform the first characterization of the atmosphere of these potentially habitable planets. Yet, the implementation of these telescopes is either risky, far in the future, or both. The ESCAPE project aims to investigate possible shortcuts for the characterization of the atmospheres of Earth-like exoplanets with existing ground and space-based telescopes, thanks to innovative combinations of observing techniques and instruments. The first objective is to investigate the possibility to detect and characterize an atmosphere around the recently discovered planet Proxima b – the closest exoplanet from us – with the high-contrast/high-resolution technique, using an adaptive optics system coupled to a high-resolution spectrograph on the Very Large Telescope. The second objective of the project is to calculate whether or not the signature (absorption lines) of a thick hydrogen/helium envelope around a habitable planet can be detected by (i) the Hubble Space Telescope and/or (ii) high-precision spectrographs mounted on ground-based telescopes. The general strategy is to use a sophisticated Global Climate Model – previously co-developed and used by the fellow – in combination with numerical models of exoplanet’s observability – developed at the University of Geneva, the host institution – to assess the possibility to make the first observations of potentially habitable planets. This project will provide pathfinder results that will further be used (1) to propose original observations of Earth-like exoplanets with existing telescopes and (2) to influence the development of the next generation of giant telescopes and their instruments.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ESCAPE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ESCAPE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  


Investigation of the SNP-induced RNA structure variations between subgenomes in polyploid wheat

Read More  

IPG_CORE (2019)

Looking for the Impersonal Core -- Impersonal Pronouns across Germanic languages

Read More