Opendata, web and dolomites

BIOVIB SIGNED

Electric Interactions and Structural Dynamics of Hydrated Biomolecules Mapped by Ultrafast Vibrational Probes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BIOVIB project word cloud

Explore the words cloud of the BIOVIB project. It provides you a very rough idea of what is the project "BIOVIB" about.

molecules    fluctuation    unravel    solvated    bound    interplay    forces    noninvasive    ion    double    separates    nanometer    ray    external    presently    magnesium    act    ground    biomolecules    definition    structures    absolute    shift    contributions    local    thz    theoretical    tertiary    single    channel    separated    sensitive    channels    frequencies    multidimensional    molecular    electric    atmospheres    instantaneous    mechanisms    versus    strengths    water    spectroscopy    length    folding    influenced    covalent    interactions    gives    genuine    discerning    resolved    site    aqueous    transmembrane    time    charge    calibrates    spatial    excitations    atmosphere    barely    strength    rhodopsins    retarded    stark    introduces    interface    outer    ions    structure    function    paradigm    scales    experiments    stabilizing    breaking    probes    biomolecular    levels    scattering    fundamental    fluctuating    shell    sub    structurally    composition    quantitative    milliseconds    dipolar    biological    hydration    mapping    dna    dynamics    secondary    holds    stranded    rna    exist    dynamically    vibrational    scientific    terahertz    environment    direct   

Project "BIOVIB" data sheet

The following table provides information about the project.

Coordinator
FORSCHUNGSVERBUND BERLIN EV 

Organization address
address: RUDOWER CHAUSSEE 17
city: BERLIN
postcode: 12489
website: www.fv-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙330˙492 €
 EC max contribution 2˙330˙492 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSVERBUND BERLIN EV DE (BERLIN) coordinator 2˙330˙492.00

Map

 Project objective

Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOVIB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOVIB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More