Opendata, web and dolomites

BIOVIB SIGNED

Electric Interactions and Structural Dynamics of Hydrated Biomolecules Mapped by Ultrafast Vibrational Probes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BIOVIB project word cloud

Explore the words cloud of the BIOVIB project. It provides you a very rough idea of what is the project "BIOVIB" about.

multidimensional    experiments    theoretical    introduces    structure    unravel    presently    solvated    rhodopsins    transmembrane    dynamics    rna    mapping    forces    scales    nanometer    genuine    atmospheres    separated    discerning    interplay    external    thz    molecular    scattering    gives    dynamically    separates    ion    ions    site    levels    composition    biomolecular    channel    channels    time    environment    biomolecules    versus    electric    water    structurally    contributions    mechanisms    milliseconds    exist    length    shell    structures    single    barely    aqueous    terahertz    atmosphere    scientific    probes    calibrates    paradigm    influenced    molecules    fluctuating    stranded    bound    definition    local    instantaneous    fundamental    ground    interface    covalent    vibrational    stabilizing    noninvasive    charge    strength    secondary    act    function    retarded    interactions    holds    sub    resolved    dipolar    excitations    fluctuation    folding    strengths    spectroscopy    spatial    frequencies    ray    breaking    dna    direct    absolute    hydration    quantitative    stark    biological    magnesium    shift    double    tertiary    sensitive    outer   

Project "BIOVIB" data sheet

The following table provides information about the project.

Coordinator
FORSCHUNGSVERBUND BERLIN EV 

Organization address
address: RUDOWER CHAUSSEE 17
city: BERLIN
postcode: 12489
website: www.fv-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙330˙492 €
 EC max contribution 2˙330˙492 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSVERBUND BERLIN EV DE (BERLIN) coordinator 2˙330˙492.00

Map

 Project objective

Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOVIB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOVIB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More