Opendata, web and dolomites


Electric Interactions and Structural Dynamics of Hydrated Biomolecules Mapped by Ultrafast Vibrational Probes

Total Cost €


EC-Contrib. €






 BIOVIB project word cloud

Explore the words cloud of the BIOVIB project. It provides you a very rough idea of what is the project "BIOVIB" about.

genuine    ions    ground    strengths    theoretical    biomolecules    single    rhodopsins    stranded    barely    gives    double    molecules    levels    biomolecular    sensitive    site    tertiary    bound    biological    atmosphere    structures    mechanisms    quantitative    dynamics    external    paradigm    act    structurally    stark    influenced    aqueous    dna    environment    sub    calibrates    ray    discerning    multidimensional    terahertz    vibrational    thz    fundamental    fluctuation    stabilizing    channel    dipolar    strength    breaking    charge    holds    scattering    length    retarded    transmembrane    scientific    resolved    scales    local    electric    mapping    channels    nanometer    hydration    versus    fluctuating    interactions    unravel    time    outer    interface    function    experiments    structure    spectroscopy    molecular    excitations    separates    separated    magnesium    rna    folding    composition    probes    forces    absolute    exist    introduces    secondary    covalent    noninvasive    ion    shell    solvated    atmospheres    instantaneous    contributions    dynamically    shift    direct    spatial    definition    frequencies    water    interplay    presently    milliseconds   

Project "BIOVIB" data sheet

The following table provides information about the project.


Organization address
city: BERLIN
postcode: 12489

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙330˙492 €
 EC max contribution 2˙330˙492 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSVERBUND BERLIN EV DE (BERLIN) coordinator 2˙330˙492.00


 Project objective

Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOVIB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOVIB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Mass Politics of Disintegration

Read More  


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

SUExp (2018)

Strategic Uncertainty: An Experimental Investigation

Read More