Opendata, web and dolomites

DRYSOM SIGNED

Unraveling long-term soil organic matter dynamics under drought in forest soils and their link to ecosystem properties

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DRYSOM" data sheet

The following table provides information about the project.

Coordinator
EIDGENOSSICHEN FORSCHUNGSANSTALT FUR WALD SCHNEE UND LANDSCHAFT 

Organization address
address: ZUERCHERSTRASSE 111
city: BIRMENSDORF
postcode: 8903
website: www.wsl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 237˙007 €
 EC max contribution 237˙007 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2023-07-23

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOSSICHEN FORSCHUNGSANSTALT FUR WALD SCHNEE UND LANDSCHAFT CH (BIRMENSDORF) coordinator 237˙007.00

Map

 Project objective

Severe drought periods are predicted to increase in Central Europe. The increasing frequency of drought will affect the growth and carbon (C) storage in forests. While drought effects have intensively been studied for plants, much less is known about their impact on soil processes. Soils store more C than atmosphere and vegetation together, and contribute to CO2 removal and thus to mitigate climate change. The proposed project aims to estimate how reoccurring summer drought affects long-term dynamics of soil organic matter (SOM) in forest soils. Our research will be carried out in a unique 15-year-long irrigation experiment in a dry oak and pine forest. The project will advance the knowledge and improve its transfer between disciplines by (1) tracing C inputs and fluxes from roots and mycorrhiza into soils and losses of ‘old’ SOM by applying novel isotopic approaches, and relating these changes to soil microbiota analyzed by DNA, (2) determining drought impacts on SOM stability and its sources by innovative marker molecules approaches in SOM pools, and (3) linking these results ecosystem properties measured by collaborating research groups. The use of a long-term experimental set up, together with novel techniques, will offer a unique opportunity to identify the unknown drought-induced effects on belowground C cycling at long time scales. These results will be important for facing current climate change impacts, and will be communicated not only to scientists but also to policy makers and to a wider public. The project will enhance the researcher’s skills in cutting-edge methodologies and techniques, boost teaching and writing skills and increase communication competences, through an ad-hoc spectrum of training activities. As such, future career opportunities will highly improve and the fellowship will be a key milestone for the researcher to become an independent and leading scientist in research on SOM dynamics in forests under long-term drought.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DRYSOM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DRYSOM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

QuanToPol (2020)

Quantum Topological Polaritonics

Read More