Opendata, web and dolomites

VOLCPRO SIGNED

Volcanic Forcing in Climate Model Projections: Towards a New Paradigm.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "VOLCPRO" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2022-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 224˙933.00

Map

 Project objective

Volcanic eruptions injecting gases into the stratosphere modify Earth’s radiative balance and atmosphere chemistry, which in turn impacts all components of the Earth system. The surface cooling that follows large eruptions can have major societal impacts and volcanic eruptions contribute to mitigate global warming. Yet, climate model projections use simplistic representation of this key forcing and commonly assume a constant volcanic forcing in the future. The most realistic projections only represent very large and rare eruptions, and ignore how climate change will affect the rise of volcanic plumes, the evolution of the associated aerosol clouds and the subsequent climate impacts.

To improve the representation of volcanic forcing in climate model projections, I will address two fundamental questions: 1) How does a statistically realistic representation of volcanic eruptions of all magnitude in climate models affect projected climate changes? 2) How will climate-volcano feedbacks modulate the impact of future volcanic eruptions on climate? To answer them, I will perform a suite of experiments with the United Kingdom’s flagship Earth system model, UKESM1, which is a fully coupled aerosol-chemistry-climate model. These experiments are aimed to feed the designing of future climate projections.

During the fellowship, I will gain brand-new skills in climate modeling and be trained by world-leading experts in this field. I will combine these skills with my expertise in physical volcanology to address the proposed research questions and, in particular, improve our understanding of climate-volcano interactions in the context of global climate change. The fellowship will enable me to become an interdisciplinary leader in climate-volcano research and will constitute a stepping stone towards new research opportunities and applications for a tenure-track position.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VOLCPRO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VOLCPRO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Self-EsteemProcesses (2020)

A self-esteem process framework of the transition to work

Read More  

MAIRWEN (2019)

Mapping Argument Structure in Early Irish and Welsh

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More