Opendata, web and dolomites


Conductive elastomers with tuneable properties for smart wearable electronics.

Total Cost €


EC-Contrib. €






Project "TEXTHIOL" data sheet

The following table provides information about the project.


Organization address
postcode: 33000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE BORDEAUX FR (BORDEAUX) coordinator 184˙707.00


 Project objective

Organic conductive polymers are gaining increased interest each day due to their broad applications, low cost and ease of manipulation. Their potential to develop new products that will transform the daily lives of people in Europe and around the world is significant. Among the application areas with the highest potential, smart textiles provide one of the most futuristic and innovative potential products. At present, a conducting polymeric material that can be use directly as textile does not exist primarily a consequence of the poor (brittle) materials properties of conducting polymers. Any such products are created by coating of the conductive material onto the textile or tissue. However the ability to use polymers to create wearable electronics has transformative potential to become a disruptive technology. This proposal aims to create a conductive polymer with elastomeric properties such that it has enhanced materials properties and can therefore be applied directly as scaffold for smart textile creation. To make the polymeric scaffold, the nucleophilic thiol-yne “click” reaction between an activated alkyne and thiol will be used. This pathway will enable retention of the electrical conductivity while presenting the possibility to tune the mechanical properties by choosing the stereochemistry (E/Z) of the unsaturated bond that is formed. Moreover, the elastomeric nature of the resultant materials, presents a unique opportunity to create conductive elastomers that can be easily applied to wearable electronics: able to record electrical signals such as heartbeats or muscular contractions. The project is going to combining the organic synthesis and click chemistry expertise of Mantione with that of conducting polymer synthesis and characterization of Prof. Hadziioannou. The planned secondment is aiming to allied to the expertise of Prof. Malliaras (Cambridge, UK) in wearable electronics: biotest the materials and practically create the textile.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TEXTHIOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TEXTHIOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

THIODIV (2020)

Exploring thioalkynes potential in gold catalysis with a divergent reactivity manifold

Read More  

fORPHAN (2020)

From protein sequence to function – computational and experimental de-orphanization of uncharacterized enzymes in fungi

Read More  

CAR-OAC (2020)

Carotid-artery-on-a-chip device to model thromboembolisms induced by vascular lesions and perform drug screenings

Read More