Opendata, web and dolomites

PredAlgoBC SIGNED

Machine learning prediction for breast cancer therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PredAlgoBC project word cloud

Explore the words cloud of the PredAlgoBC project. It provides you a very rough idea of what is the project "PredAlgoBC" about.

models    optimal    populations    mathematics    arrayexpress    biomarkers    stromal    bulk    treat    patients    efficient    center    association    resistance    bioinformaticians    methodological    highest    worldwide    single    datasets    omics    statistical    clinicians    geo    subtypes    guiding    combining    bioinfomics    overcome    cross    medicine    analyze    overview    strategy    data    subclonal    marker    types    innovative    mathematicians    mining    breast    grant    lack    therapeutic    treatments    genetic    ico    tools    microenvironment    dimension    technologies    predictive    biological    personalized    death    search    markers    learning    cells    difficulty    interface    biology    entity    treatment    incidence    structure    alterations    cell    compromised    mainly    throughput    algorithms    advocate    observations    homogeneous    immune    machine    heterogeneity    reveal    discovery    cancer    pipeline    regional    stored    databases    limited    normalization    tumor    complexity    multidisciplinary    option    sufficient    power    platform    driver    women   

Project "PredAlgoBC" data sheet

The following table provides information about the project.

Coordinator
INSTITUT DE CANCEROLOGIE DE L'OUEST 

Organization address
address: 15 RUE ANDRE BOQUEL, CS10059
city: ANGERS
postcode: 49100
website: https://www.centrepaulpapin.org/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT DE CANCEROLOGIE DE L'OUEST FR (ANGERS) coordinator 184˙707.00

Map

 Project objective

Breast cancer is the cancer with the highest incidence in women worldwide, and is the leading cause of cancer-related death, mainly due to treatment resistance. Recently, tumor heterogeneity has been described as one of the key driver in treatment failure. Indeed, tumor is not a homogeneous entity to treat, but a complex association of subclonal populations driven by their own genetic alterations, and immune and stromal cells from microenvironment. Breast cancer subtypes and tumor heterogeneity advocate for the development of tailored, personalized treatments, but so far, the discovery of efficient predictive markers has been compromised by the lack of adapted biological models and methodological tools. The recent developments of high-throughput methods for bulk and single-cell analyses has generated large ‘omics’ datasets from patients, stored in open access databases (ArrayExpress, GEO). Combining these numerous datasets will grant a sufficient statistical power to reveal a comprehensive overview of tumor complexity. However, this data mining is currently limited by methodological challenges like cross-platform normalization and the difficulty to analyze complex data structure with high dimension observations. To overcome these issues, I propose to implement a multidisciplinary project at the interface between mathematics, biology, and information technologies. With the support of the mathematicians and bioinformaticians from the Bioinfomics unit of the regional comprehensive cancer center (ICO), I will develop and implement machine-learning algorithms in the search of predictive biomarkers for breast cancer treatment. This innovative strategy will lead to personalized medicine in breast cancer by guiding clinicians in the selection of the optimal therapeutic option. Moreover, this generated pipeline for predictive marker discovery could be further adapted for the treatment of other cancer types.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PREDALGOBC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PREDALGOBC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More