Opendata, web and dolomites

PredAlgoBC SIGNED

Machine learning prediction for breast cancer therapy

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PredAlgoBC project word cloud

Explore the words cloud of the PredAlgoBC project. It provides you a very rough idea of what is the project "PredAlgoBC" about.

marker    complexity    bioinformaticians    statistical    cross    personalized    genetic    search    medicine    tools    microenvironment    subtypes    structure    biological    treat    reveal    driver    stored    data    predictive    immune    single    grant    algorithms    machine    mathematicians    treatment    lack    methodological    alterations    throughput    regional    patients    normalization    sufficient    association    observations    subclonal    markers    death    women    platform    arrayexpress    limited    highest    models    strategy    center    ico    analyze    overcome    option    dimension    overview    datasets    mainly    geo    innovative    stromal    advocate    technologies    databases    cancer    entity    interface    treatments    incidence    bulk    therapeutic    difficulty    biology    clinicians    bioinfomics    biomarkers    efficient    types    breast    worldwide    multidisciplinary    omics    mining    mathematics    optimal    discovery    learning    cells    guiding    homogeneous    resistance    power    tumor    heterogeneity    compromised    pipeline    populations    combining    cell   

Project "PredAlgoBC" data sheet

The following table provides information about the project.

Coordinator
INSTITUT DE CANCEROLOGIE DE L'OUEST 

Organization address
address: 15 RUE ANDRE BOQUEL, CS10059
city: ANGERS
postcode: 49100
website: https://www.centrepaulpapin.org/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2021-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT DE CANCEROLOGIE DE L'OUEST FR (ANGERS) coordinator 184˙707.00

Map

 Project objective

Breast cancer is the cancer with the highest incidence in women worldwide, and is the leading cause of cancer-related death, mainly due to treatment resistance. Recently, tumor heterogeneity has been described as one of the key driver in treatment failure. Indeed, tumor is not a homogeneous entity to treat, but a complex association of subclonal populations driven by their own genetic alterations, and immune and stromal cells from microenvironment. Breast cancer subtypes and tumor heterogeneity advocate for the development of tailored, personalized treatments, but so far, the discovery of efficient predictive markers has been compromised by the lack of adapted biological models and methodological tools. The recent developments of high-throughput methods for bulk and single-cell analyses has generated large ‘omics’ datasets from patients, stored in open access databases (ArrayExpress, GEO). Combining these numerous datasets will grant a sufficient statistical power to reveal a comprehensive overview of tumor complexity. However, this data mining is currently limited by methodological challenges like cross-platform normalization and the difficulty to analyze complex data structure with high dimension observations. To overcome these issues, I propose to implement a multidisciplinary project at the interface between mathematics, biology, and information technologies. With the support of the mathematicians and bioinformaticians from the Bioinfomics unit of the regional comprehensive cancer center (ICO), I will develop and implement machine-learning algorithms in the search of predictive biomarkers for breast cancer treatment. This innovative strategy will lead to personalized medicine in breast cancer by guiding clinicians in the selection of the optimal therapeutic option. Moreover, this generated pipeline for predictive marker discovery could be further adapted for the treatment of other cancer types.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PREDALGOBC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PREDALGOBC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More