Opendata, web and dolomites

Origins SIGNED

From Planet-Forming Disks to Giant Planets

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Origins" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙474˙252 €
 EC max contribution 2˙474˙252 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 2˙474˙252.00

Map

 Project objective

Planet-forming disks around young stars display a large variety of spatial structures indicating pattern formation by gas-dust dynamics and planet-disk interactions. The diversity of planetary properties point to different physical and chemical conditions in their parental disks and a range of formation pathways. Currently, there is no unifying approach which connects disk physics and chemistry with exoplanet properties. The development of such a link remains a considerable challenge as long as fundamental disk properties are uncertain. The objective of this project is to close the gap between the conditions in planet-forming disks and the properties of giant planets and their atmospheres. We will constrain fundamental disk properties - mass, turbulent state, and molecular content - by dedicated infrared and (sub)millimetre observations combined with comprehensive modeling efforts and experimental studies of ice-grain surface chemistry. The second very demanding project goal is to discover young giant planets in their birth environments and to characterize their properties, applying innovative techniques to analyze the results of approved imaging surveys with AO instruments at the VLT/LBT. These data will be supplemented by ALMA observations tracing gas kinematic signatures induced by embedded planets. The results of these studies will lead to major progress in understanding the timescale for planet formation and will reveal the nature of planet-disk interactions. The most challenging objective of the project is to build a connection between disk properties and the atmospheres of giant planets. Planet formation and evolution models will be coupled with a description of the chemical and accretion history to predict planetary elemental abundances, setting the scene for the thermal and chemical structure of giant planet atmospheres. Synthetic spectra will be provided using state-of-the art atmospheric codes and will be compared to observed planet spectra.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ORIGINS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ORIGINS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MetTraC (2019)

Biocatalytic Methyltransferase Cascades

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More  
lastchecktime (2020-10-31 18:37:53) correctly updated