Opendata, web and dolomites

SYNTISU SIGNED

Remotely-controlled functional synthetic tissues

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYNTISU project word cloud

Explore the words cloud of the SYNTISU project. It provides you a very rough idea of what is the project "SYNTISU" about.

transmit    unexplored    remotely    explore    illustrative    tissues    cooperate    stability    neurons    strictly    laboratory    subject    therapeutic    3d    resolution    extend    modulate    functionalized    bilayers    mimic    excellent    justifies    point    commercialized    synthetic    muscle    reversibly    strength    communication    medicine    signals    atp    materials    separated    investor    functionally    lipid    functional    initial    hierarchical    discoveries    light    mm    biological    release    outputs    energy    droplets    generation    cm    showed    fidelity    grant    therapeutics    active    droplet    emergent    printers    ultimately    surgical    exceed    cells    protein    erc    heat    superior    picoliter    patterning    components    internal    implants    expression    molecules    transform    assembled    structures    networks    generate    formed    printed    replicate    full    synthesis    proteins    membrane    safe    external    magnetism    patterned    electrical    adventurous    nature    individual    faithful    peptides    shape   

Project "SYNTISU" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙428˙065 €
 EC max contribution 2˙428˙065 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2024-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 2˙428˙065.00

Map

 Project objective

We will make synthetic tissues for applications in medicine. In the short-term, synthetic tissues will be used to deliver therapeutics; ultimately, synthetic tissues will be used as components of surgical implants. The synthetic tissues will be formed from patterned 3D-printed picoliter droplet networks. They will be functionally active and subject to external control. They will be safe, because they cannot replicate. Key aspects of synthetic tissues, which were introduced by our laboratory, remain unexplored. At this point, our initial work justifies an adventurous full research program. The capabilities of biological tissues greatly exceed those of individual cells, because the cells in them cooperate to produce emergent properties. Our approach considers, but does not strictly mimic nature. 3D printers make patterned networks of picoliter droplets, separated from each other by individual lipid bilayers, which can be functionalized with membrane proteins to allow internal and external communication. In early work, we showed that droplet networks can change shape and transmit electrical signals. Now, we will greatly extend the properties of these materials. We will produce synthetic tissues with excellent fidelity, at high resolution, with faithful patterning and of superior strength and stability. Hierarchical cm-scale structures will be assembled from mm-scale networks. We will make functional tissues able to change shape rapidly and reversibly, take up, transform and release molecules, and generate and use energy. Functional synthetic tissues will be controlled remotely with light, heat, and magnetism. Outputs will include ATP generation and protein expression. Finally, we will explore two illustrative applications of synthetic tissues: the controlled synthesis and release of therapeutic peptides, and the ability to modulate the activities of neurons and muscle cells. Discoveries derived from this ERC grant will be commercialized with investor funding.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNTISU" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNTISU" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More  

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More  

ARCTIC (2020)

Air Transport as Information and Computation

Read More