Opendata, web and dolomites

SYNTISU SIGNED

Remotely-controlled functional synthetic tissues

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SYNTISU project word cloud

Explore the words cloud of the SYNTISU project. It provides you a very rough idea of what is the project "SYNTISU" about.

commercialized    synthetic    components    reversibly    patterning    emergent    unexplored    energy    transmit    generation    point    patterned    resolution    communication    erc    medicine    fidelity    droplet    implants    laboratory    active    tissues    electrical    picoliter    ultimately    strength    therapeutics    superior    grant    discoveries    internal    strictly    functional    magnetism    excellent    adventurous    surgical    generate    replicate    heat    separated    external    biological    synthesis    exceed    justifies    nature    cells    neurons    droplets    release    therapeutic    lipid    bilayers    explore    shape    structures    printers    functionalized    formed    faithful    remotely    extend    showed    initial    membrane    safe    atp    cooperate    functionally    mm    investor    full    stability    transform    proteins    signals    cm    assembled    materials    subject    hierarchical    outputs    modulate    light    protein    mimic    printed    muscle    networks    expression    individual    illustrative    molecules    3d    peptides   

Project "SYNTISU" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙428˙065 €
 EC max contribution 2˙428˙065 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2024-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 2˙428˙065.00

Map

 Project objective

We will make synthetic tissues for applications in medicine. In the short-term, synthetic tissues will be used to deliver therapeutics; ultimately, synthetic tissues will be used as components of surgical implants. The synthetic tissues will be formed from patterned 3D-printed picoliter droplet networks. They will be functionally active and subject to external control. They will be safe, because they cannot replicate. Key aspects of synthetic tissues, which were introduced by our laboratory, remain unexplored. At this point, our initial work justifies an adventurous full research program. The capabilities of biological tissues greatly exceed those of individual cells, because the cells in them cooperate to produce emergent properties. Our approach considers, but does not strictly mimic nature. 3D printers make patterned networks of picoliter droplets, separated from each other by individual lipid bilayers, which can be functionalized with membrane proteins to allow internal and external communication. In early work, we showed that droplet networks can change shape and transmit electrical signals. Now, we will greatly extend the properties of these materials. We will produce synthetic tissues with excellent fidelity, at high resolution, with faithful patterning and of superior strength and stability. Hierarchical cm-scale structures will be assembled from mm-scale networks. We will make functional tissues able to change shape rapidly and reversibly, take up, transform and release molecules, and generate and use energy. Functional synthetic tissues will be controlled remotely with light, heat, and magnetism. Outputs will include ATP generation and protein expression. Finally, we will explore two illustrative applications of synthetic tissues: the controlled synthesis and release of therapeutic peptides, and the ability to modulate the activities of neurons and muscle cells. Discoveries derived from this ERC grant will be commercialized with investor funding.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNTISU" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNTISU" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More