Opendata, web and dolomites

BioSIGNAL SIGNED

Biological pump Sensitivity and climate change: InterroGatiNg past environmentAL perturbations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BioSIGNAL project word cloud

Explore the words cloud of the BioSIGNAL project. It provides you a very rough idea of what is the project "BioSIGNAL" about.

representation    depletes    mechanism    reasonably    learned    sensitivity    photosynthetic    travels    floor    evolutionary    oxygen    broad    appraisal    strength    marine    generation    model    export    perturbations    ecological    mechanistic    atmosphere    column    ecosystems    sea    exported    negative    positive    biogeochemical    ocean    removal    ultimately    inducing    confrontation    opportunity    oxygenation    anthropogenic    ongoing    good    changing    climate    relevance    inform    pump    carbon    net    biological    cycles    climatic    constitutes    organisms    dissolved    emissions    events    water    engaging    unrivaled    difficult    environmental    death    hence    global    ecosystem    impacts    buried    models    fraction    susceptible    subsequently    behavior    concentrations    chronicle    records    record    geological    me    periods    refers    remineralized    predict    projections    generally    scientists    assimilated    makers    lessons    co2    algae    policy    outputs    zone    tell    photic    efficiency   

Project "BioSIGNAL" data sheet

The following table provides information about the project.

Coordinator
COMMUNAUTE D' UNIVERSITES ET ETABLISSEMENTS UNIVERSITE BOURGOGNE - FRANCHE - COMTE 

Organization address
address: 32 AVENUE DE L'OBSERVATOIRE
city: BESANCON
postcode: 25000
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 257˙619 €
 EC max contribution 257˙619 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The biological pump refers to the mechanism by which carbon is assimilated by photosynthetic algae in the ocean photic zone and subsequently exported to depth upon death of the organisms. The largest part of this export production is generally remineralized as it travels throughout the water column where it depletes dissolved oxygen concentrations. A fraction of the export production may still reach the sea floor, where it is susceptible to be buried, thus inducing a net removal of CO2 from the ocean-atmosphere system. Therefore, the good appraisal of the response of the biological pump to changing environmental conditions is crucial to reasonably predict climate and ocean oxygenation impacts, both associated with past events and as will result from ongoing anthropogenic emissions. However, the behavior of the ecological system in the face of climatic changes and how it impacts the strength and efficiency of the biological pump remains difficult to predict. To address this, here I propose to investigate the sensitivity of the biological pump in a novel way – using a state-of-the-art ecological model including a representation of marine biogeochemical cycles. I will focus on past periods, which provide a whole evolutionary chronicle to which model outputs can be directly compared. Confrontation of model results with geological records will also allow me to develop a mechanistic understanding of the behavior of the ecological system in response to a wide range of environmental perturbations. The proposed approach constitutes an unrivaled opportunity to increase our understanding of the geological record and what it can tell us of relevance to the future. Lessons learned here, both positive and negative, have the potential to help inform the next generation of marine ecosystem models needed to make improved projections of future global change impacts on ocean ecosystems, and hence engaging a broad range of global change scientists and ultimately, policy makers.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOSIGNAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOSIGNAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

RealFlex (2019)

Real-time simulator-driver design and manufacturing based on flexible systems

Read More  

KiT-FIG (2019)

Kidney Transplantation - Functional ImmunoGenomics

Read More