Opendata, web and dolomites

Optoheart SIGNED

All-optical framework for the correlative imaging of cardiac meso-scale cytoarchitecture and multi-scale electrical conduction

Total Cost €


EC-Contrib. €






 Optoheart project word cloud

Explore the words cloud of the Optoheart project. It provides you a very rough idea of what is the project "Optoheart" about.

combines    stimulate    platform    mammalian    influences    tool    spectral    diseased    global    mapped    architecture    death    easily    cardio    experimentally    simultaneously    abnormal    microstructural    correlated    3d    intact    tissue    platforms    risk    techniques    innovative    data    concerning    sudden    vasculature    activation    patho    gated    sheet    capability    time    clinically    voltage    light    patterns    muscle    organs    context    hearts    mi    heart    invasive    custom    regions    arrhythmias    depths    mortality    conduction    combining    restricting    versatile    optical    physiology    imaging    healthy    myocardium    therapies    realise    combination    interfaces    transmembrane    stimulation    structurally    clearing    employing    multiphoton    optogenetics    cardiac    correlative    questions    microscopy    channelrhodopsin    myocardial    underlying    overlap    rhythms    individual    altered    infarction    heterogeneity    scar    proof    limitations    channels    quantifying    cytoarchitecture    treat    electrical    ion    framework   

Project "Optoheart" data sheet

The following table provides information about the project.


Organization address
postcode: G12 8QQ

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 212˙933.00


 Project objective

Myocardial infarction (MI) is a key risk factor for sudden cardiac death, a leading global cause of mortality. Understanding how altered tissue architecture in MI influences cardiac electrical conduction is crucial to develop therapies which treat abnormal heart rhythms (arrhythmias) clinically. Optical measurement of transmembrane voltage in cardiac muscle is a versatile, non-invasive tool to investigate myocardial conduction. However, the current techniques of wide-field and multiphoton imaging have individual limitations restricting their ability to study key features of conduction in a 3D framework. Furthermore, optogenetics cannot be easily implemented in imaging platforms due to spectral overlap with the activation of light-gated ion channels such as channelrhodopsin. Combining all 3 techniques will provide a platform to study electrical conduction within mammalian myocardium in a 3D context and will be capable of quantifying effects introduced by tissue heterogeneity such as vasculature and scar tissue. The proposed project combines development of novel imaging technology with applied cardio-(patho)-physiology to study cardiac conduction at tissue interfaces in intact hearts with an innovative correlative approach. A new all-optical platform will be developed to simultaneously measure and stimulate cardiac activity, with the capability for real-time stimulation using custom optical patterns. Conduction will be mapped experimentally across structurally distinct regions and depths in healthy and MI hearts. This data will be correlated with underlying cytoarchitecture in the same hearts by employing tissue clearing in combination with novel light-sheet microscopy for imaging of structurally intact whole organs. This work will realise a new platform to study conduction in 3D microstructural context and deliver proof-of-concept data to address key questions concerning electrical behaviour in healthy and diseased hearts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTOHEART" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTOHEART" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More