Opendata, web and dolomites

Optoheart SIGNED

All-optical framework for the correlative imaging of cardiac meso-scale cytoarchitecture and multi-scale electrical conduction

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Optoheart project word cloud

Explore the words cloud of the Optoheart project. It provides you a very rough idea of what is the project "Optoheart" about.

intact    hearts    arrhythmias    voltage    clinically    gated    framework    quantifying    channels    stimulation    easily    mi    techniques    abnormal    microstructural    channelrhodopsin    imaging    light    tissue    sudden    limitations    overlap    interfaces    sheet    microscopy    platforms    altered    regions    myocardial    transmembrane    mortality    rhythms    combination    structurally    individual    time    questions    simultaneously    global    correlated    employing    combining    innovative    organs    treat    diseased    versatile    context    therapies    capability    activation    depths    risk    conduction    stimulate    healthy    optical    combines    vasculature    architecture    concerning    realise    invasive    cardio    scar    correlative    custom    clearing    muscle    data    myocardium    physiology    heterogeneity    ion    influences    spectral    mapped    heart    infarction    death    patho    underlying    experimentally    restricting    patterns    electrical    cytoarchitecture    proof    3d    tool    platform    optogenetics    mammalian    multiphoton    cardiac   

Project "Optoheart" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 212˙933.00

Map

 Project objective

Myocardial infarction (MI) is a key risk factor for sudden cardiac death, a leading global cause of mortality. Understanding how altered tissue architecture in MI influences cardiac electrical conduction is crucial to develop therapies which treat abnormal heart rhythms (arrhythmias) clinically. Optical measurement of transmembrane voltage in cardiac muscle is a versatile, non-invasive tool to investigate myocardial conduction. However, the current techniques of wide-field and multiphoton imaging have individual limitations restricting their ability to study key features of conduction in a 3D framework. Furthermore, optogenetics cannot be easily implemented in imaging platforms due to spectral overlap with the activation of light-gated ion channels such as channelrhodopsin. Combining all 3 techniques will provide a platform to study electrical conduction within mammalian myocardium in a 3D context and will be capable of quantifying effects introduced by tissue heterogeneity such as vasculature and scar tissue. The proposed project combines development of novel imaging technology with applied cardio-(patho)-physiology to study cardiac conduction at tissue interfaces in intact hearts with an innovative correlative approach. A new all-optical platform will be developed to simultaneously measure and stimulate cardiac activity, with the capability for real-time stimulation using custom optical patterns. Conduction will be mapped experimentally across structurally distinct regions and depths in healthy and MI hearts. This data will be correlated with underlying cytoarchitecture in the same hearts by employing tissue clearing in combination with novel light-sheet microscopy for imaging of structurally intact whole organs. This work will realise a new platform to study conduction in 3D microstructural context and deliver proof-of-concept data to address key questions concerning electrical behaviour in healthy and diseased hearts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OPTOHEART" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OPTOHEART" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DIGILEAD (2020)

Digital leadership, well-being and performance in organizations

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

CLIMACY (2020)

Practices of Climate Diplomacy and Uneven Policy Responses on Climate Change on Human Mobility

Read More