Opendata, web and dolomites

DISTRESS SIGNED

Understanding the mechanisms behind tree responses to drought-induced stress with increasing tree size

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DISTRESS" data sheet

The following table provides information about the project.

Coordinator
CENTRO DE INVESTIGACION ECOLOGICA Y APLICACIONES FORESTALES 

Organization address
address: UNIVERSITAT AUTONOMA DE BARCELONA EDIFICI C
city: BELLATERRA
postcode: 8193
website: http://www.creaf.uab.es/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 245˙732 €
 EC max contribution 245˙732 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-12-16   to  2022-12-15

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRO DE INVESTIGACION ECOLOGICA Y APLICACIONES FORESTALES ES (BELLATERRA) coordinator 245˙732.00
2    BATTELLE MEMORIAL INSTITUTE NON PROFIT CORPORATION US (COLUMBUS) partner 0.00

Map

 Project objective

Plants adjust leaf water potential and hydraulic conductance under drought through stomatal behaviour, reducing sap flow and protecting plants from extensive water loss and embolism. Due to the negative effect that vapour pressure deficit (VPD) and tree height have on canopy-scale water conductance (G), Darcy’s law predicts a decline in G due to the expected increase in VPD following climate warming, to which tall trees would be presumably more sensitive. Further work is thus needed to understand the effect that tree size has on tree response to increased VPD and drought. This project aims at (1) testing whether, at a given VPD, trees adjust different functional traits to compensate for the negative effect of height on G in (a) tropical forests and (b) at a global scale, and (2) describing the mechanisms behind these adjustments and the potential interactions with other functional processes that may impair tree response to drought stress with increasing size. We will first measure multiple functional traits (including sap flux, gas exchange and leaf and xylem water potential) on trees of different heights to test Darcy’s law predictions and evaluate the role that the trade-offs among traits play on enhanced vulnerability to drought with increasing tree size in tropical forests. In order to assess whether the studied mechanisms prevail across species and ecosystems, we will perform a global-scale analysis of sap-flow and, thus, G responses to VPD as a function of tree height using the sap-flux data from 159 species and nine different biomes gathered within SAPFLUXNET. This integrated analysis will provide a better understanding of the role that tree size plays in tree vulnerability to drought in the short (temporary physiological response) and long term (legacy effects), allowing the improvement of mechanistic models of tree response to climatic variability. Such information is essential to better simulate the impact that climate change may have on forest ecosystems.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISTRESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISTRESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MITafterVIT (2020)

Unravelling maintenance mechanisms of immune tolerance after termination of venom immunotherapy by means of clonal mast cell diseases

Read More  

VDGSEGUR (2019)

Gender Violence and Security in the Interoceanic Industrial Corridor of the Isthmus of Tehuantepec: A Critical Examination of Policies and Practices

Read More  

NeuroTick (2019)

The neuroscience of tickling: cerebellar mechanisms and sensory prediction

Read More