Opendata, web and dolomites

NeuroFreezing SIGNED

Biophysical Properties of the Neuronal Cytosol and their Dynamics upon Nutrient Starvation, Aging, and in Neurodegenerative Diseases.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NeuroFreezing project word cloud

Explore the words cloud of the NeuroFreezing project. It provides you a very rough idea of what is the project "NeuroFreezing" about.

exhibit    inherited    description    poorly    neurobiology    h1    separations    homogeneous    regulating    deprived    proteins    expertise    investigation    sufficient    actively    disorders    reveal    strategies    rates    model    crowding    polyq    disease    combining    aggregation    discovered    influence    cytosol    potentially    neurons    cell    biophysics    types    polyglutamine    biophysical    glucose    alter    environmental    biochemistry    viscosity    inducing    hypotheses    hd    protein    cells    induce    transport    density    differences    trigger    mouse    shifting    critical    techniques    cytosolic    h2    dynamic    regulate    stresses    starvation    mammalian    therapeutic    nutrient    decrease    intracellular    neuronal    material    aging    diseases    diffusive    yeast    despite    molecular    fundamentally    interactions    hallmark    huntington    regulated    stress    ultimately    metabolism    first    stable    paradigm    aged    neurodegenerative    volume    unclear   

Project "NeuroFreezing" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 203˙149 €
 EC max contribution 203˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 203˙149.00

Map

 Project objective

The material properties of the cytosol control the biochemistry of the cell and influence all molecular interactions by regulating rates of intracellular diffusive transport. Despite this critical role, these properties remain poorly understood, and it is unclear to what extent the cytosol is homogeneous, whether there are differences between cell types, and if these properties are stable or dynamic. It has recently been discovered that yeast cells regulate their cytosolic properties in response to stress, namely glucose-starvation and aging. These stresses result in a decrease in cell volume and an increase in cytosolic crowding, inducing widespread phase separations and aggregation of polyglutamine (polyQ)-proteins. This type of polyQ-protein aggregation is the molecular hallmark of neurodegenerative diseases like Huntington's Disease (HD), and is very poorly understood. In this project, I will produce the first description of the biophysical properties of the neuronal cytosol, and I will directly test whether aged or nutrient-deprived neurons, or neurons from an HD mouse model exhibit changes in these properties. I propose that viscosity and density of mammalian cells, and in particular neuronal cells, are dynamic properties that can be actively regulated in response to environmental changes. In particular, I will test two hypotheses: - H1: Nutrient starvation and aging induce changes to the material properties of the neuronal cytosol. - H2: A neuronal stress-response upon starvation or aging is sufficient to trigger aggregation of polyQ-proteins. Combining state-of-the-art techniques and expertise in the fields of neurobiology, metabolism, and biophysics, my investigation of these novel and potentially paradigm shifting hypotheses could fundamentally alter our understanding of the material properties of the neuronal cytosol, and ultimately reveal new therapeutic strategies for the most common inherited neurodegenerative disorders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROFREEZING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NEUROFREEZING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ProTeCT (2019)

Proteasome as a target to combat trichomoniasis

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

VDGSEGUR (2019)

Gender Violence and Security in the Interoceanic Industrial Corridor of the Isthmus of Tehuantepec: A Critical Examination of Policies and Practices

Read More