Opendata, web and dolomites


Global and local impacts on Atlantic RHODOlith beds: Implications for estimates of blue CARbon ecosystem services

Total Cost €


EC-Contrib. €






Project "RHODOCAR" data sheet

The following table provides information about the project.


Organization address
city: FARO
postcode: 8005 032
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 147˙815 €
 EC max contribution 147˙815 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-05-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRO DE CIENCIAS DO MAR DO ALGARVE PT (FARO) coordinator 147˙815.00


 Project objective

Rhodolith beds are one of the most extensive benthic ecosystems along the Atlantic coasts and key environments to continental shelf resilience. Besides providing substrate and habitat for numerous other algae and sessile invertebrates, their ability to calcify, their high abundance and biomass, makes rhodoliths major carbonate producers. Recent empirical estimations suggest that the carbonate marine deposits generated by these organisms represent a total potential carbon sink of 0.4 x 109 t C yr-1. Hence, giving the increasing role of marine ecosystems in the storage of blue carbon, rhodolith beds may represent a not yet considered significant carbon store. Regarding carbon sequestration, studies on rhodolith bed community metabolism are scarce and so far only available for two temperate beds that indicate that they can act both as CO2 source and organic carbon sink. As many marine ecosystems, rhodolith beds are currently under threat related to global climate change (GCC), with local impacts due to increasing coastal urbanization, potentially lowering even further their resilience. Thus, by using a physiological approach, this project will provide much needed information on the basic mechanistic understanding of rhodolith metabolism (photosynthesis, calcification), rhodolith responses to global and local stressors, and rhodolith bed community metabolism and carbon storage along a latitudinal gradient. Taken together, this information will allow assessing the importance of rhodolith beds as natural carbon sinks, thus, help ascertain whether these ecosystems meet the requirements to be integrated into climate mitigation policy, and will further allow quantifying the effects of GCC on their carbon sequestration and storage ability. In addition, it will help recognizing potential interactions between global and local stressors, hence, aid in the development of effective local conservation and management strategies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RHODOCAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RHODOCAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More  

DEMOS (2019)

Disfluencies and Eye MOvements during Speech: what can they reveal about language production?

Read More