Opendata, web and dolomites

ICELEARNING SIGNED

Artificial Intelligence techniques for ice core analyses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ICELEARNING project word cloud

Explore the words cloud of the ICELEARNING project. It provides you a very rough idea of what is the project "ICELEARNING" about.

flow    date    pollen    volcanic    imperative    ice    antarctic    detection    ultra    suitable    diatom    producing    grains    predictive    paleoresearch    models    dust    methodology    particle    venice    last    environmental    microscopy    preconditions    artificial    oceanic    destructive    insoluble    geoscience    surpassing    particles    ca    missing    microscope    records    observations    basis    pattern    innovative    techniques    automatic    paleoclimate    myr    prerequisites    algorithms    marine    detections    retrieve    icelearning    foscari    synergy    images    barbante    carlo    learning    sediment    melted    science    expert    foraminiferal    cfa    breaking    university    ground    samples    cores    classification    diluted    except    record    prof    continuous    realms    representing    impurity    imaging    recognition    analytical    paleoceanography    commercial    manual    machine    assemblages    proposer    trace    trapped    routine    atmospheric    bergen    intelligence    climatic    counting    volcanism    biosphere    geology    icelerning    quantification    core   

Project "ICELEARNING" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA CA' FOSCARI VENEZIA 

Organization address
address: DORSODURO 3246
city: VENEZIA
postcode: 30123
website: www.unive.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-15   to  2022-01-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA CA' FOSCARI VENEZIA IT (VENEZIA) coordinator 171˙473.00

Map

 Project objective

The detection of insoluble particles trapped in ice or sediment cores, like pollen grains, foraminiferal and diatom assemblages, volcanic and dust particles represents the basis for paleoresearch on the biosphere, volcanism and oceanic and atmospheric realms. To date, except for ice core dust, this analytical goal is achieved during years of particle observations by manual microscopy. Artificial Intelligence predictive models are already applied to several research fields within geoscience, but up to date its implementation to paleoclimate is missing. With ICELEARNING, I aim to develop a two-phase routine for the automatic quantification of insoluble particles trapped in ice cores. The routine is based on a commercial Flow Imaging Microscope producing particle images from within melted ice samples. The images are then analyzed by Pattern Recognition algorithms which will be developed for automatic particle classification and counting. The routine will be specifically developed in order to be implemented in Continuous Flow Analysis (CFA) systems, therefore surpassing the traditional methods by providing continuous particle records from ice cores. ICELEARNING methodology is suitable to any diluted sample, thus representing a ground-breaking analytical advancement from ice core science to marine geology. This innovative routine is automatic and non-destructive, imperative prerequisites for the future Antarctic ice core project analytical measurements, aiming to retrieve a continuous climatic and environmental record covering the last 1.5 Myr. ICELERNING will be developed at Ca’ Foscari University of Venice with Prof. Carlo Barbante, leading expert in trace and ultra-trace level impurity detections in ice cores and with the University of Bergen, a top institution in marine geology and paleoceanography. This unique synergy, in addition to the proposer’s knowledge of CFA systems and machine learning techniques will provide the best preconditions for the project success.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICELEARNING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICELEARNING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

POLINGO (2018)

The Politics of Legitimacy: Non-partisan global governance and networked INGO power in the global governance of post-war states

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More