Opendata, web and dolomites

ICELEARNING SIGNED

Artificial Intelligence techniques for ice core analyses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ICELEARNING project word cloud

Explore the words cloud of the ICELEARNING project. It provides you a very rough idea of what is the project "ICELEARNING" about.

climatic    impurity    images    last    university    preconditions    innovative    volcanism    surpassing    antarctic    particles    cores    automatic    science    retrieve    diluted    models    paleoclimate    myr    microscopy    marine    trapped    record    suitable    date    icelerning    counting    except    geology    imaging    classification    bergen    foraminiferal    prof    representing    core    trace    venice    observations    detection    producing    insoluble    carlo    pattern    expert    breaking    environmental    flow    pollen    synergy    imperative    ca    foscari    geoscience    techniques    diatom    records    routine    algorithms    oceanic    intelligence    commercial    barbante    ice    microscope    continuous    dust    realms    ground    atmospheric    assemblages    biosphere    cfa    melted    predictive    proposer    quantification    sediment    artificial    ultra    manual    prerequisites    detections    volcanic    basis    missing    icelearning    learning    paleoceanography    recognition    destructive    machine    methodology    samples    particle    analytical    grains    paleoresearch   

Project "ICELEARNING" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA CA' FOSCARI VENEZIA 

Organization address
address: DORSODURO 3246
city: VENEZIA
postcode: 30123
website: www.unive.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-15   to  2022-01-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA CA' FOSCARI VENEZIA IT (VENEZIA) coordinator 171˙473.00

Map

 Project objective

The detection of insoluble particles trapped in ice or sediment cores, like pollen grains, foraminiferal and diatom assemblages, volcanic and dust particles represents the basis for paleoresearch on the biosphere, volcanism and oceanic and atmospheric realms. To date, except for ice core dust, this analytical goal is achieved during years of particle observations by manual microscopy. Artificial Intelligence predictive models are already applied to several research fields within geoscience, but up to date its implementation to paleoclimate is missing. With ICELEARNING, I aim to develop a two-phase routine for the automatic quantification of insoluble particles trapped in ice cores. The routine is based on a commercial Flow Imaging Microscope producing particle images from within melted ice samples. The images are then analyzed by Pattern Recognition algorithms which will be developed for automatic particle classification and counting. The routine will be specifically developed in order to be implemented in Continuous Flow Analysis (CFA) systems, therefore surpassing the traditional methods by providing continuous particle records from ice cores. ICELEARNING methodology is suitable to any diluted sample, thus representing a ground-breaking analytical advancement from ice core science to marine geology. This innovative routine is automatic and non-destructive, imperative prerequisites for the future Antarctic ice core project analytical measurements, aiming to retrieve a continuous climatic and environmental record covering the last 1.5 Myr. ICELERNING will be developed at Ca’ Foscari University of Venice with Prof. Carlo Barbante, leading expert in trace and ultra-trace level impurity detections in ice cores and with the University of Bergen, a top institution in marine geology and paleoceanography. This unique synergy, in addition to the proposer’s knowledge of CFA systems and machine learning techniques will provide the best preconditions for the project success.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICELEARNING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICELEARNING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ROSETTA (2020)

Deciphering the Role of aberrant glycOSylation in the rEsponse to Targeted TherApies for breast cancer

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

LISEDIDYS (2020)

Limit sets of discrete dynamical systems

Read More