Opendata, web and dolomites

InDiQE SIGNED

Infinite-dimensional quantum effects

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "InDiQE" data sheet

The following table provides information about the project.

Coordinator
OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN 

Organization address
address: DR. IGNAZ SEIPEL-PLATZ 2
city: WIEN
postcode: 1010
website: www.oeaw.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 174˙167 €
 EC max contribution 174˙167 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    OESTERREICHISCHE AKADEMIE DER WISSENSCHAFTEN AT (WIEN) coordinator 174˙167.00

Map

 Project objective

The fundamental understanding of quantum correlations, as well as their characterization and quantification play a fundamental role for information processing and communication. The investigation of quantum correlations in high-dimensional, infinite dimensional or hybrid systems is of particular interest for the development of novel applications in quantum technologies. High-dimensional entangled states contain a large amount of entanglement, which represents a vital resource for applications in quantum information processing. The goal of this proposal is to find an optimal strategy to exploit this resource. Crucial open problems to be solved are the continuation of the development of mathematical methods and observable conditions for a convenient description of general qudit systems, and verifying as well as quantifying general quantum correlations in high-dimensional and multipartite systems. This project is placed at the border between quantum information theory and quantum optics, exploring the potential of high and infinite dimensional systems for quantum information tasks. Additionally, modern questions in quantum thermodynamics also relate to the control of infinite dimensional quantum systems and will benefit from the methods developed. Particularly, we adapt and further develop theoretical tools to harness and efficiently describe quantum correlations in complex systems. The specific objectives are to advance the understanding of practical systems and realistic scenarios for quantum information tasks and quantum thermodynamics applications. Furthermore, the role that different kinds of quantum correlations have when complex systems are constituted of multiple degrees of freedom will be addressed. We are going to accomplish these goals by quantifying and classifying multimode non-classicality, investigating discrete- and continuous-variables hybrid systems and the discretization problem, addressing key challenges in the respective fields.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INDIQE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INDIQE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More