Opendata, web and dolomites

Exa-FireFlows SIGNED

Exascale framework for supporting high-fidelity simulations of multiphase reacting flows in complex geometries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Exa-FireFlows project word cloud

Explore the words cloud of the Exa-FireFlows project. It provides you a very rough idea of what is the project "Exa-FireFlows" about.

transitioning    scientific    complimentary    alternative    projections    heterogeneous    geometries    reducing    societal    emissions    efficiency    multiple    designed    numerical    supporting    gas    practical    communication    grids    high    transformed    codes    play    source    memory    hierarchies    greenhouse    leadership    strategies    explore    co    pollutants    multiphase    turbulent    science    framework    parallelism    computationally    avoidance    formulations    hardware    coherent    simulation    physics    dominate    strategic    expensive    unstructured    flows    hpc    enabled    fuels    greener    economic    computing    milestone    combustion    chemistry    algorithms    industries    exascale    fidelity    fossil    fuel    pollutant    too    contributions    indicate    cycle    experiments    theory    transportation    software    nowadays    supercomputers    technologies    reacting    levels    fundamental    improvements    generation    performance    simulations    disciplines    liquid    power    re    evolution    competitiveness   

Project "Exa-FireFlows" data sheet

The following table provides information about the project.

Coordinator
BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION 

Organization address
address: Calle Jordi Girona 31
city: BARCELONA
postcode: 8034
website: www.bsc.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2021-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BARCELONA SUPERCOMPUTING CENTER - CENTRO NACIONAL DE SUPERCOMPUTACION ES (BARCELONA) coordinator 172˙932.00

Map

 Project objective

High performance computing (HPC) has transformed scientific research across numerous disciplines by supporting theory and experiments with numerical simulations. Exascale computing is the next milestone in HPC and is called to play an important role in economic competitiveness, societal challenges and science leadership. Combustion is one of the fields with high strategic importance and potential to fully exploit the future exascale systems. Nowadays, combustion of fossil fuels is the main power source, and some projections indicate that the combustion of liquid fuels will still dominate transportation and power generation industries for the next 50 years. Further understanding of the physics and chemistry of the combustion process is fundamental to achieve improvements in fuel efficiency, reducing greenhouse gas emissions and pollutants, while transitioning to alternative fuels and greener technologies. The use of advanced numerical simulations has enabled to make important contributions for increasing cycle efficiency, reduction of pollutant emissions, and use of alternative fuels in practical applications. The exascale computing will enable the development of high-fidelity turbulent combustion simulations that could not be analyzed before because it was too computationally expensive. However, the implementation of the new and future supercomputers require the evolution of multiple and different technologies in a coherent and complimentary way, including hardware, software, and application algorithms. Scientific codes and formulations need to be re-designed and adapted in order to exploit the different levels of parallelism and complex memory hierarchies of the new and future heterogeneous systems. The goal of the project is to explore and develop novel co-execution, memory awareness and communication avoidance strategies into a framework that allows the simulation of advance high-fidelity multiphase reacting flows in complex geometries using unstructured grids.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EXA-FIREFLOWS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EXA-FIREFLOWS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GainGrain (2019)

Understanding genetic hubs in rice inflorescence architecture to increase grain yield

Read More  

BoundModProbAG (2019)

Boundedness and Moduli problems in birational geometry

Read More  

DEMOS (2019)

Disfluencies and Eye MOvements during Speech: what can they reveal about language production?

Read More