Opendata, web and dolomites

TOPOGRAPHYSENSING SIGNED

Effects of 3D topographies on mechanosensing in intestine epithelial architecture and dynamics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TOPOGRAPHYSENSING project word cloud

Explore the words cloud of the TOPOGRAPHYSENSING project. It provides you a very rough idea of what is the project "TOPOGRAPHYSENSING" about.

forms    adhesion    dynamics    shows    sense    ladoux    segregated    mechanotransduction    mechanisms    techniques    modulated    found    locations    tension    maintenance    manner    versa    tissue    contractility    platform    organize    hypothesize    epithelial    curved    organization    cortical    until    participates    intestine    defective    spectrin    consists    sites    topographic    cellular    contrast    laboratory    molecular    ankyrin    actin    epcam    biology    mechanosensing    context    cell    biophysics    mediated    network    precise    multidisciplinary    hypothesis    permeates    primarily    shown    collective    integral    cadherin    epithelium    polarity    substrates    understand    disordered    topographies    modulation    cues    beta    cytoskeleton    observations    exposed    microfabrication    interactions    networks    cytoskeletal    unknown    functions    generating    groups    alpha    orderly    2d    vice    scrutinize    cells    monolayer    actomyosin    conform    topographical    interacting    layered    arrangement    sensing    regulation    microenvironmental    form    architecture    sophisticated    spatial    3d    geometric   

Project "TOPOGRAPHYSENSING" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 134˙600 € (68%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 134˙600.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Intestine epithelium consists of spatially segregated cells that organize into groups of various functions at different locations of the 3D curved epithelial monolayer. How geometric cues contribute to the maintenance of the sophisticated epithelial architecture and dynamics in 3D remains unknown until now. Recently, the Ladoux's laboratory has found that EpCAM-modulated cell contractility associated with the epithelial monolayer polarity, cytoskeletal arrangement, and cell-cell adhesion in 3D context. In contrast to 2D context, the EpCAM-defective tissue shows a loss of collective cellular spatial organization and forms a disordered multi-layered epithelium when exposed to substrates of 3D topographies. In addition, Ankyrin-G and α/β-spectrin network which participates in cortical tension modulation was identified as the main interacting partner with EpCAM in epithelial cells. These observations lead us to hypothesize that EpCAM allows the tissue to sense and conform to complex 3D topographies in an orderly manner. However, the molecular mechanisms and other related functions of EpCAM-mediated mechanotransduction remain unknown. As large scale mechanosensing has been shown to occur primarily through the actin cytoskeleton which permeates the tissue to form a network, we aim to understand the interactions between the EpCAM-mediated pathway and actin modulation and/or E-cadherin adhesion sites that may allow 3D topographical sensing. Our working hypothesis is that EpCAM forms an integral part of the cellular responses to topographic cues that has a more general role in controlling epithelial architecture and dynamics through the regulation of actomyosin networks, or vice versa. Here, we propose to scrutinize EpCAM-mediated mechanotransduction by generating a platform with precise control of geometric factors and microenvironmental cues using a range of multidisciplinary approaches including microfabrication, biophysics, and advanced molecular biology techniques.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPOGRAPHYSENSING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPOGRAPHYSENSING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More