Opendata, web and dolomites

MrDoc SIGNED

Development and commercialization of a semi-supervised learning AI for robust diagnosis in real world settings.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MrDoc project word cloud

Explore the words cloud of the MrDoc project. It provides you a very rough idea of what is the project "MrDoc" about.

limitations    noisy    creative    blood    producers    pharmaceutical    selling    additional    owners    companies    final    practitioners    pressure    time    false    overcoming    cardiac    camera    smartphone    examinations    simply    inputs    limited    train    gp    examination    cardiovascular    difficulties    solution    smartphones    invasiveness    licence    semi    closed    accuracy    cured    consume    original    signals    labelling    interpret    usually    burden    people    health    diagnose    tests    symptoms    dataset    cameras    detection    detect    ing    software    timeframe    data    platform    accurate    variability    waiting    technological    circuit    imagination    amounts    providers    positively    mimics    ai    diabetes    solutions    biometric    egcs    incomplete    electronics    death    tools    economies    negative    dirty    non    local    despite    human    apps    financial    glucose    hypertension    diseases    discouraged    labelled    supervised    world    huge    heart    healthcare    check    don    rate    hardware    ncds    medical    arrhythmia    led    communicable    patients    errors    positive    haemoglobin    advancements    consumers    learning   

Project "MrDoc" data sheet

The following table provides information about the project.

Coordinator
MR DOC SRL 

Organization address
address: VIA PIETRO BLASERNA 40
city: ROMA
postcode: 146
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2020-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MR DOC SRL IT (ROMA) coordinator 50˙000.00

Map

 Project objective

Non-communicable diseases such as cardiovascular diseases, diabetes, are by far the leading cause of death in the world and a growing burden for patients, healthcare providers and local economies. Despite many NCDs conditions like cardiac arrhythmia, diabetes, hypertension can be cured with early detection, they don’t often show symptoms. During their medical check-up, medical practitioners (GP) can’t be accurate as specific examinations (e.g. EGCs, blood tests), resulting in a growing number of errors or false negative/positive, which represent for Healthcare systems and additional financial burden. People are usually discouraged from doing specific examination due to long waiting time, invasiveness of medical tests and additional costs.Even if technological advancements have led to AI based easy-to-use solutions able to contribute positively to easy and early detection of diseases and pre-diseases condition, they come along with many significant limitations, such as the need to train on huge amounts of labelled data and difficulties in managing inputs that are noisy, incomplete or simply different from the original dataset (such data generated from a smartphone camera).This results in limited accuracy or significant costs and time consume for labelling of data. We have developed a platform based on a semi-supervised learning AI, able to analyse and interpret medical dataset through a process that mimics human creative imagination and, in a very short timeframe, detect and diagnose some NCDs and biometric parameters (blood pressure, Heart rate variability, haemoglobin, blood glucose) from “dirty” signals, generated by consumer electronics devices (smartphones, closed circuit cameras, etc.), with a high level of accuracy overcoming existing limitations.We aim at selling and licence our solution to 3 main targets: - final consumers/patients, - producers/owners of software and hardware tools (as well as Apps) in Health sector, Pharmaceutical companies.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MRDOC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MRDOC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

Proteus 25 (2018)

Developing the world’s first food wrapping machine with organic film

Read More  

Savesight (2020)

Contact lens embedded sensor for ocular hypertension and glaucoma monitoring

Read More  

ALR4000 (2019)

Automated LCD Recycling series 4000

Read More