Opendata, web and dolomites

ThermoTON SIGNED

Thermophone - a novel heat transfer based approach to global TOnal Noise cancellation in aviation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ThermoTON project word cloud

Explore the words cloud of the ThermoTON project. It provides you a very rough idea of what is the project "ThermoTON" about.

significance    motivates    believe    cancellation    disturbance    disciplinary    revolutionary    static    utilized    waves    successful    macro    regulations    modeling    active    arts    flying    attenuation    limiting    periodically    contributor    hindrance    analyzing    demonstrating    vibro    accurate    transducer    conductive    modern    improvements    amplitude    emitter    fourier    effect    frequency    completion    fan    efficient    model    equal    thermo    passive    transfer    hardware    derivation    joule    deposits    civil    geometric    deposited    cancelation    thin    conform    manufacturing    actuator    heated    conduction    definitions    regulatory    acoustic    insufficient    aviation    alone    surface    contributors    emission    noise    electronics    people    truly    created    flux    material    opposite    creates    comprising    divided    sound    tonal    aero    aircraft    pressure    stringent    electrically    optimization    acoustics    layer    speakers    thermophone    performance    dramatic    heat    creation    platforms   

Project "ThermoTON" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙993˙265 €
 EC max contribution 1˙993˙265 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 1˙993˙265.00

Map

 Project objective

Limiting the number of people affected by significant aircraft noise is one of the most important tasks of modern civil aviation. Among different contributors, tonal noise is the most important due to regulatory definitions and its attenuation characteristics, with the largest contributor being the fan aero-acoustics. Current passive noise reduction methods alone are insufficient to conform with the increasingly stringent noise emission regulations. This motivates our research in active noise cancellation, based on creation of equal amplitude and frequency pressure waves, in opposite phase to the disturbance. Having identified that the actuator technology is the main hindrance against hardware implementation in flying platforms, we have been investigating a revolutionary technology based on a truly static and surface-deposited sound emitter (thermophone), which creates pressure fields by thermo-acoustic effects rather than the vibro-acoustics utilized by common speakers. Comprising of a periodically Joule heated electrically conductive thin layer, a highly efficient thermophone requires modeling of non-Fourier heat conduction in deposits. The project is divided into 4 multi-disciplinary objectives: 1. Derivation of accurate macro-scale heat conduction model, including non-Fourier effects 2. Developing thermophone performance model by analyzing thermo-acoustic effect 3. Optimization of performance by material and geometric selection, and by manufacturing processes 4. Demonstrating aero-acoustic fan noise cancelation via the thermo-acoustic effect created by static heat flux transducer In addition to the significance that this project will have to the field of aviation, I strongly believe that successful completion of each work package will provide dramatic improvements over the state of the arts in conduction heat transfer modelling, consumer electronics such as speakers, manufacturing methods for thermo-acoustic devices, and active aero-acoustic noise cancellation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THERMOTON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THERMOTON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More