Opendata, web and dolomites

ThermoTON SIGNED

Thermophone - a novel heat transfer based approach to global TOnal Noise cancellation in aviation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ThermoTON project word cloud

Explore the words cloud of the ThermoTON project. It provides you a very rough idea of what is the project "ThermoTON" about.

definitions    conform    arts    manufacturing    deposited    thin    speakers    heated    contributor    modeling    contributors    emission    believe    thermophone    electrically    modern    utilized    aviation    aircraft    material    hardware    tonal    thermo    electronics    fourier    acoustics    alone    revolutionary    static    creates    stringent    efficient    cancelation    aero    transfer    successful    regulations    pressure    layer    truly    macro    demonstrating    hindrance    flux    completion    effect    limiting    attenuation    regulatory    vibro    transducer    deposits    creation    motivates    actuator    civil    disturbance    sound    derivation    cancellation    created    comprising    noise    people    acoustic    geometric    conductive    improvements    surface    divided    platforms    optimization    accurate    periodically    joule    equal    significance    amplitude    dramatic    active    analyzing    opposite    disciplinary    insufficient    fan    flying    waves    frequency    passive    emitter    conduction    performance    heat    model   

Project "ThermoTON" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙993˙265 €
 EC max contribution 1˙993˙265 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 1˙993˙265.00

Map

 Project objective

Limiting the number of people affected by significant aircraft noise is one of the most important tasks of modern civil aviation. Among different contributors, tonal noise is the most important due to regulatory definitions and its attenuation characteristics, with the largest contributor being the fan aero-acoustics. Current passive noise reduction methods alone are insufficient to conform with the increasingly stringent noise emission regulations. This motivates our research in active noise cancellation, based on creation of equal amplitude and frequency pressure waves, in opposite phase to the disturbance. Having identified that the actuator technology is the main hindrance against hardware implementation in flying platforms, we have been investigating a revolutionary technology based on a truly static and surface-deposited sound emitter (thermophone), which creates pressure fields by thermo-acoustic effects rather than the vibro-acoustics utilized by common speakers. Comprising of a periodically Joule heated electrically conductive thin layer, a highly efficient thermophone requires modeling of non-Fourier heat conduction in deposits. The project is divided into 4 multi-disciplinary objectives: 1. Derivation of accurate macro-scale heat conduction model, including non-Fourier effects 2. Developing thermophone performance model by analyzing thermo-acoustic effect 3. Optimization of performance by material and geometric selection, and by manufacturing processes 4. Demonstrating aero-acoustic fan noise cancelation via the thermo-acoustic effect created by static heat flux transducer In addition to the significance that this project will have to the field of aviation, I strongly believe that successful completion of each work package will provide dramatic improvements over the state of the arts in conduction heat transfer modelling, consumer electronics such as speakers, manufacturing methods for thermo-acoustic devices, and active aero-acoustic noise cancellation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THERMOTON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THERMOTON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

CELPRED (2020)

Circuit elements of the cortical circuit for predictive processing

Read More