Opendata, web and dolomites

IN-Fo-trace-DG SIGNED

Role of GABAergic interneurons in the formation of new memory traces in the Dentate Gyrus ofbehaving mice

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 IN-Fo-trace-DG project word cloud

Explore the words cloud of the IN-Fo-trace-DG project. It provides you a very rough idea of what is the project "IN-Fo-trace-DG" about.

little    patterns    emerge    form    traces    interneurons    question    optogenetic    associations    principal    constraints    assembly    largely    processed    vivo    output    intensive    modifications    ins    changing    adapt    cell    innovative    signals    visualize    fundamental    interconnectivity    populations    born    neuronal    neurons    individual    interference    area    mechanisms    first    made    photon    tools    mature    analyze    acquisition    learning    differently    discrete    suggest    difficult    virtual    molecular    gabaergic    structure    group    synapses    fo    population    balance    trace    theories    environment    time    cells    granule    examine    inhibitory    memory    imaging    excitatory    brain    gyrus    association    dependent    temporal    cortical    ones    insights    unknown    recruitment    spatial    plasticity    despite    organisms    memories    adult    cellular    disciplinary    inhibition    dg    recordings    gcs    progress    networks    dentate    excitation    space   

Project "IN-Fo-trace-DG" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAETSKLINIKUM FREIBURG 

Organization address
address: HUGSTETTER STRASSE 49
city: FREIBURG
postcode: 79106
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙463˙693 €
 EC max contribution 2˙463˙693 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAETSKLINIKUM FREIBURG DE (FREIBURG) coordinator 2˙463˙693.00

Map

 Project objective

Despite intensive study in the past on the problem of how information is processed in the brain to enable individual organisms to adapt to their continuously changing environment, little progress has been made on how new similar but discrete memory traces emerge in neuronal networks during learning. Current theories suggest that experience-dependent modifications in excitation-inhibition balance enable a selected group of neurons to form a new cell association during learning which represent the new memory trace. It was further proposed that particularly GABAergic inhibitory interneurons (INs) have a large impact on population activity in neuronal networks by means of their inhibitory output synapses. However, how cell associations emerge in space and time and how INs may contribute to this process is still largely unknown. This complex topic was so far difficult to address due to technical constraints. IN-Fo-Trace-DG aims to address this fundamental question in the dentate gyrus (DG), a brain structure essential for the acquisition of similar but discrete new memories. Based on our detailed knowledge on DG’s cellular elements, their interconnectivity and our recently established molecular interference tools, we will first, visualize the spatial and temporal activity patterns of cell populations during spatial learning in a virtual-reality using 2-Photon imaging. Second, we will determine the role of IN recruitment and plasticity in assembly formation by optogenetic and molecular interference. Third, we will analyze changes in excitatory and inhibitory signals in granule cells (GCs), the principal cells in this brain area, and INs during learning using whole-cell recordings in vivo. Finally, we will examine whether adult-born GCs contribute differently to learning-associated population activity compared to mature ones in the adult DG. This innovative multi-disciplinary approach will provide new insights on the mechanisms of new memory formation in cortical networks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IN-FO-TRACE-DG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IN-FO-TRACE-DG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More