Opendata, web and dolomites

EvoCellMap SIGNED

Tracing the origin and early evolution of animal cell type regulation with genomics and single-cell approaches

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "EvoCellMap" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO CENTRE DE REGULACIO GENOMICA 

Organization address
address: CARRER DOCTOR AIGUADER 88
city: BARCELONA
postcode: 8003
website: www.crg.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 1˙498˙070 €
 EC max contribution 1˙498˙070 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO CENTRE DE REGULACIO GENOMICA ES (BARCELONA) coordinator 1˙498˙070.00

Map

 Project objective

Cell types are the fundamental units of animal multicellularity. Distinct cell types are established and maintained by specific gene regulatory networks (GRNs), as well as epigenomic mechanisms that mediate the asymmetric access to genetic information within each cell. This cell regulation results in complex metazoan functions and structures. However, cell types and their regulation have only been characterized in a few species. Therefore, the origin and evolution of animal cell types remain largely unexplored, and so remains the evolution of the underlying GRNs and epigenomic mechanisms. In this project, we will develop a unified comparative framework to study cell type evolution and regulation from a multi-level and phylogenetic perspective. This project will focus on non-bilaterian metazoan lineages (Porifera, Ctenophora, Placozoa, and Cnidaria) as they are maximally informative towards reconstructing the evolutionary origins of metazoan genome regulation and of major cell types and their GRNs (e.g. neurons, secretory cells, stem cells, epithelial cells). To this end, we will integrate single-cell genomics and epigenomic profiling methods with advanced computational tools in order to: (1) investigate the origins of the animal regulatory genome; (2) characterize the diversity of cell type programs in non-bilaterian metazoans; and (3) model the structure and evolutionary dynamics of cell type-specific GRNs in these lineages. This evolutionary systems biology approach provides a complementary angle to both phylogenetically-restricted single-cell analyses and traditional cross-species studies based on targeted marker genes. Therefore, our results will fill a large gap of knowledge in our understanding of the origin and diversification of animal cell type programs and epigenomic mechanisms. In a broader context, this research program will provide unprecedented insights into the fundamental question of how cell types and their defining regulatory networks evolve.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EVOCELLMAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EVOCELLMAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TWISTRONICS (2020)

Probing topological valley currents by angular layer alignment in van der Waals heterostructures

Read More  

PeopleAndWriting (2020)

The Secret Life of Writing: People, Script and Ideas in the Iberian Peninsula (c. 900-1200)

Read More  

QUAHQ (2019)

PROBING EXOTIC QUANTUM HALL STATES WITH HEAT QUANTUM TRANSPORT

Read More