Opendata, web and dolomites

BeFerroSynaptic SIGNED

BEOL technology platform based on ferroelectric synaptic devices for advanced neuromorphic processors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BeFerroSynaptic project word cloud

Explore the words cloud of the BeFerroSynaptic project. It provides you a very rough idea of what is the project "BeFerroSynaptic" about.

wp    industry    device    line    tackled    ferrosynaptic    data    hf    physical    integration    endeavour    community    von    memory    back    switching    computing    ultimate    architecture    cmos    neuromorphic    adapt    inspired    uzh    11    cea    namlab    logic    iunet    tunnelling    consultant    bridge    fefets    power    paradigm    beol    universities    unibi    tud    rtos    bottleneck    ncsrd    centric    constitute    feasibility    ftj    transition    neuro    units    energy    ftjs    realistic    ferroelectric    neumann    beferrosynaptic    amount    gap    synergized    featuring    attempt    processor    separation    effect    solution    fefet    fab    junctions    transistors    architectures    trl    platform    expertise    synaptic    hzb    designs    complementary    zr    assembles    compute    ibm    industrial    polarization    processed    repealed    electronic    building    2020    o2    2018    conventional    technologies    efficient    academic    eth    extremely   

Project "BeFerroSynaptic" data sheet

The following table provides information about the project.

Coordinator
NAMLAB GGMBH 

Organization address
address: NOTHNITZER STRASSE 64
city: DRESDEN
postcode: 1187
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 3˙998˙928 €
 EC max contribution 3˙998˙928 € (100%)
 Programme 1. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
 Code Call H2020-ICT-2019-2
 Funding Scheme RIA
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    NAMLAB GGMBH DE (DRESDEN) coordinator 491˙967.00
2    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) participant 677˙418.00
3    HELMHOLTZ-ZENTRUM BERLIN FUR MATERIALIEN UND ENERGIE GMBH DE (BERLIN) participant 406˙750.00
4    UNIVERSITAT ZURICH CH (ZURICH) participant 392˙862.00
5    UNIVERSITAET BIELEFELD DE (BIELEFELD) participant 387˙625.00
6    IBM RESEARCH GMBH CH (RUESCHLIKON) participant 364˙750.00
7    X-FAB Dresden GmbH & Co. KG DE (DRESDEN) participant 313˙000.00
8    "NATIONAL CENTER FOR SCIENTIFIC RESEARCH ""DEMOKRITOS""" EL (AGIA PARASKEVI) participant 307˙000.00
9    CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LA NANOELETTRONICA IT (BOLOGNA) participant 303˙250.00
10    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) participant 262˙305.00
11    TECHNISCHE UNIVERSITAET DRESDEN DE (DRESDEN) participant 92˙000.00

Map

 Project objective

The increasing amount of data that has to be processed in today’s electronic devices requires a transition from the conventional compute centric paradigm to a more data centric paradigm. In order to bridge the existing gap between memory and logic units that is known as the classical von Neumann bottleneck the concept of physical separation between computing and memory unit has to be repealed. Neuro inspired architectures constitute a promising solution where both logic and memory functionality become synergized together in one synaptic unit. Our project BeFerroSynaptic addresses the specific challenges of the H2020-WP 2018-2020 by targeting for the development of electronic synaptic devices based on one of the most power-efficient memory technologies – the ferroelectric polarization switching. The ultimate goal of the BeFerroSynaptic project is to develop a ‘ferrosynaptic’ technology platform featuring back-end-of-line (BEOL) integrated Hf(Zr)O2-based ferroelectric field-effect transistors (FeFETs) and ferroelectric tunnelling junctions (FTJs) on top of an existing CMOS technology. Our attempt is to demonstrate the feasibility (TRL 4) of the ‘ferrosynaptic’ concept in an extremely energy-efficient neuromorphic computing architecture. To ensure a realistic endeavour, the ambitious challenges will be tackled by building the complementary FTJ and FeFET device development on existing technologies and adapt it to BEOL integration on top of a CMOS technology, and building on existing neuromorphic processor designs that will be adapted to the ‘ferrosynaptic’ technology. The BeFerroSynaptic consortium assembles a significant amount of resources and expertise. It includes representatives both from the academic and research community as well as from industry. The consortium is composed of 11 partners, of which 5 RTOs partners (CEA, NaMLab, NCSRD, IUNET, HZB), 4 universities (UZH, ETH, UNIBI, TUD as project consultant) and 2 industrial partners (X-FAB, IBM).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BEFERROSYNAPTIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BEFERROSYNAPTIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.)

MedPhab (2020)

Photonics Solutions at Pilot Scale for Accelerated Medical Device Development

Read More  

5G-DIVE (2019)

5G-DIVE: eDge Intelligence for Vertical Experimentation

Read More  

MultiFlex (2019)

Ultrashort Pulsed Laser Processing at 1 Kilowatt Using a Flexible Multi Beam Approach

Read More