Opendata, web and dolomites

TOPOCELL SIGNED

A cell separation microfabricated platform for cell migration and invasion assays

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TOPOCELL project word cloud

Explore the words cloud of the TOPOCELL project. It provides you a very rough idea of what is the project "TOPOCELL" about.

microfluidic    tissue    therapies    transmigration    progression    cell    analyze    near    contain    interactions    stiffness    chambers    expression    transcell    physical    ordered    elastomeric    erc    encounter    probe    topography    inflammation    profiles    tuned    differentiation    drug    sized    versatility    investigations    versatile    confined    wounds    micro    surrounding    physiological    tools    pillars    accepted    cellular    variability    microfabricated    spreading    limitations    functions    microenvironment    environment    spatial    therapy    cells    geometry    duracell    limited    plane    easily    possibilities    narrow    sorting    transmigrate    substrates    porosity    nanotechnology    accurate    migration    matrix    genetic    biological    confinement    tissues    favor    technologies    offers    temporal    tumor    ultimately    overcome    composition    resolutions    micron    boyden    anticipate    answer    prevent    assays    spaces    screening    incorporating    substrate    micropillar    homeostasis    biology    fundamental    environments    designed   

Project "TOPOCELL" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 150˙000.00

Map

 Project objective

Cell migration is essential for tissue development, homeostasis, tumor progression, including the responses to wounds and inflammation. Cell interactions with their microenvironment affect many cellular functions such as spreading, migration and even differentiation. These interactions can be studied by incorporating micro- and nanotechnology-related tools. The design of substrates based on these technologies offers new possibilities to probe the cellular responses to changes in their physical environment. The investigations of the physical interactions of cells and their surrounding matrix can be carried out in well-defined and near physiological conditions. In tissues, cells encounter confined environments and narrow spaces that could favor or prevent migration. In the DURACELL ERC project, we are studying the impact of substrate stiffness on cell migration. We propose to develop and use microfabricated substrates to control substrate confinement and topography and thus analyze cellular responses. Such elastomeric substrates are designed that contain ordered micron-sized pillars allowing cells to transmigrate through versatile confined spaces. The development of accurate methods to study cellular transmigration is important to answer fundamental biological processes and for cell-based therapy and drug screening. The well-accepted methods for transmigration assays including Boyden chambers, microfluidic devices present important limitations including spatial and temporal resolutions, limited variability and control of porosity composition and geometry. To overcome these limitations, the goal of TRANSCELL is to develop in-plane micropillar substrates whose geometry can be easily tuned to control and analyze cell transmigration, cell sorting and ultimately genetic expression profiles. We anticipate that the versatility of this method will offer new opportunities for fundamental research in cell biology, but also in cell therapies and drug screening.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPOCELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPOCELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Aware (2019)

Aiding Antibiotic Development with Deep Analysis of Resistance Evolution

Read More  

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

E-DURA (2018)

Commercialization of novel soft neural interfaces

Read More