Opendata, web and dolomites

ProExcer SIGNED

Projectile exciter for noiseless environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProExcer project word cloud

Explore the words cloud of the ProExcer project. It provides you a very rough idea of what is the project "ProExcer" about.

erc    form    ball    signal    deceases    comfort    grant    whisper    constructed    dishwashers    proved    reduce    precision    direct    relation    tuneable    spindles    shooter    self    detection    natural    online    moving    near    prototype    tests    levels    distributors    exist    frequencies    centres    vibration    machining    aircrafts    mixers    hormone    treatment    impulse    khz    standard    dynamic    protect    successful    competition    ideal    direction    manufacturers    efficient    environment    popular    accurately    names    rotating    panels    usually    industrial    siren    identifies    nuisance    limited    frequency    contact    financial    micron    appear    accurate    elimination    cars    performance    impulses    mems    submitted    accepted    patent    force    bandwidth    applicability    sub    domestic    excitations    noise    brand    driving    prall    stress    free    cutting    experiments    precise    impacts    excitation    excite    source    cardiovascular    commercial    magnitude    modal    machines    silence    objects    electric    machine    exciters    shafts    expressed    packages    shorter    tools    data    location    broadband    sensitive    time    public    health    prove    drawbacks   

Project "ProExcer" data sheet

The following table provides information about the project.

Coordinator
BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM 

Organization address
address: MUEGYETEM RAKPART 3
city: BUDAPEST
postcode: 1111
website: www.bme.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM HU (BUDAPEST) coordinator 150˙000.00

Map

 Project objective

Noise is not just a nuisance; it affects our health. No accepted financial data exist for the treatment costs of noise-related health problems, but several studies prove its direct relation to stress hormone levels or cardiovascular deceases, and many public organizations promote low-noise environment to protect health and comfort. Noise reduction has become major field of manufacturers’ competition: noise level data appear on domestic machines from mixers to dishwashers, brand names with ‘whisper’ or ‘silence’ are popular, aircrafts are successful due to their low noise levels. The efficient way to reduce noise is the elimination of its source that is usually vibration of some machine elements. Vibration elimination is relevant in the development of electric and self-driving cars where control panels and MEMS devices are sensitive for high-frequency excitations in the same way as high-performance machine tools are with aims at (sub)micron cutting precision.

Methods of vibration reduction are based on the so-called modal testing that identifies the machines’ dynamic properties like natural frequencies. The test requires accurate broadband excitation. Commercial exciters have several drawbacks; one of these is the limited applicability for moving targets, rotating shafts. In the ERC Advanced Grant “SIREN”, a patent application was submitted and the pre-prototype of a ball shooter was constructed to excite spindles of machining centres by ball impacts. Experiments with the pre-prototype proved that the contact time is one order of magnitude shorter than that of standard impulse tests, while the force signal is near ideal: prall-free impulses with 30 kHz bandwidth were generated. Potential industrial end-users and distributors expressed interest in case a prototype is developed with accurately tuneable impact time/location together with precise online detection of impact direction for moving objects. These tasks form the work packages and deliverables of the proposal.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROEXCER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROEXCER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

SoftHandler (2019)

Commercial feasibility of an integrated soft robotic system for industrial handling

Read More  

CIRCULAR X (2020)

Experimenting with Circular Service Business Models

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More