Opendata, web and dolomites

ProExcer SIGNED

Projectile exciter for noiseless environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProExcer project word cloud

Explore the words cloud of the ProExcer project. It provides you a very rough idea of what is the project "ProExcer" about.

natural    ball    expressed    near    machine    dishwashers    silence    bandwidth    manufacturers    names    self    vibration    whisper    shorter    frequencies    tuneable    identifies    noise    mems    treatment    dynamic    moving    experiments    time    aircrafts    deceases    siren    precise    competition    levels    erc    hormone    frequency    nuisance    elimination    excite    modal    efficient    impacts    machining    data    performance    accurate    khz    panels    relation    direct    commercial    driving    brand    protect    centres    signal    force    prove    domestic    stress    ideal    drawbacks    limited    grant    health    rotating    form    machines    source    detection    popular    impulse    cars    submitted    reduce    precision    industrial    cutting    distributors    applicability    public    constructed    online    cardiovascular    tools    objects    electric    exciters    shooter    standard    successful    location    exist    packages    shafts    tests    mixers    free    financial    prall    sensitive    excitation    broadband    sub    patent    comfort    prototype    proved    spindles    accepted    environment    impulses    micron    contact    magnitude    accurately    direction    excitations    usually    appear   

Project "ProExcer" data sheet

The following table provides information about the project.

Coordinator
BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM 

Organization address
address: MUEGYETEM RAKPART 3
city: BUDAPEST
postcode: 1111
website: www.bme.hu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Total cost 0 €
 EC max contribution 150˙000 € (0%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-PoC
 Funding Scheme ERC-POC-LS
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETEM HU (BUDAPEST) coordinator 150˙000.00

Map

 Project objective

Noise is not just a nuisance; it affects our health. No accepted financial data exist for the treatment costs of noise-related health problems, but several studies prove its direct relation to stress hormone levels or cardiovascular deceases, and many public organizations promote low-noise environment to protect health and comfort. Noise reduction has become major field of manufacturers’ competition: noise level data appear on domestic machines from mixers to dishwashers, brand names with ‘whisper’ or ‘silence’ are popular, aircrafts are successful due to their low noise levels. The efficient way to reduce noise is the elimination of its source that is usually vibration of some machine elements. Vibration elimination is relevant in the development of electric and self-driving cars where control panels and MEMS devices are sensitive for high-frequency excitations in the same way as high-performance machine tools are with aims at (sub)micron cutting precision.

Methods of vibration reduction are based on the so-called modal testing that identifies the machines’ dynamic properties like natural frequencies. The test requires accurate broadband excitation. Commercial exciters have several drawbacks; one of these is the limited applicability for moving targets, rotating shafts. In the ERC Advanced Grant “SIREN”, a patent application was submitted and the pre-prototype of a ball shooter was constructed to excite spindles of machining centres by ball impacts. Experiments with the pre-prototype proved that the contact time is one order of magnitude shorter than that of standard impulse tests, while the force signal is near ideal: prall-free impulses with 30 kHz bandwidth were generated. Potential industrial end-users and distributors expressed interest in case a prototype is developed with accurately tuneable impact time/location together with precise online detection of impact direction for moving objects. These tasks form the work packages and deliverables of the proposal.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROEXCER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROEXCER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More  

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More  

LapIt (2019)

Making AML treatment a clinical reality: A novel anti-IL7 receptor antibody to deliver Lap to 5LO positive cells

Read More