Opendata, web and dolomites

ThermoRise SIGNED

Rise of the 3rd dimension in nanotemperature mapping

Total Cost €


EC-Contrib. €






Project "ThermoRise" data sheet

The following table provides information about the project.


Organization address
city: AVEIRO
postcode: 3810-193

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 1˙988˙353 €
 EC max contribution 1˙988˙353 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDADE DE AVEIRO PT (AVEIRO) coordinator 1˙988˙353.00


 Project objective

The last decades witnessed a quest for devices responding to temperature at a distance with unprecedented space resolution, approaching the nanoscale. Such devices are valuable in both fundamental and applied science, from overheat in micromachines to hyperthermia applied to cells. Despite great advances, the response is still collected in 2D. In real systems, heat flows in 3 dimensions such that 2D nanothermometers give just a plane view of a 3D reality. The restriction to 2D emerges because space resolution is bound to time and temperature resolutions, leading to a trilemma: scanning into the 3rd dimension is time consuming and cannot be achieve without losing temperature and time resolutions. While incremental improvements have been achieved in recent years, adding the 3rd dimension to nanothermometry is crucial for further impact and requires an innovative approach. Herein, I propose the development of nano local probes with tailored magnetic properties recording critical information about local temperature in 3D. These thermometric local probes avoid the resolution trilemma by recording the most relevant temperature information instead of reading the present temperature value. In many applications, including cellular hyperthermia, most part of the current temperature reading is of minor relevance and can be dropped. The key temperature information includes the maximum temperature achieved, the surpass of a given temperature threshold, and the time elapsed after this surpass. Once recorded, this key information can be read in 3D by standard devices (such as confocal microscopes and magnetic resonance imaging scanners) without time constrains and thus keeping a high space and temperature resolution. Moreover, the reading step can be performed in-situ and/or ex-situ, decoupling probes and reading devices if needed. This widens the range of applications of nanothermometers, allowing detection in confined environments and in non-transparent media.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THERMORISE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THERMORISE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

EVOMENS (2020)

The evolution of menstruation in primates

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More