Opendata, web and dolomites

SEED SIGNED

Solvated Ions in Solid Electrodes: Alternative routes toward rechargeable batteries based on abundant elements

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SEED project word cloud

Explore the words cloud of the SEED project. It provides you a very rough idea of what is the project "SEED" about.

solutions    detrimental    interfaces    markets    initiated    solid    efforts    fundamental    argument    limited    solvated    forthcoming    radii    ca2    phases    na    structures    abundance    shell    liquid    severe    rising    acts    storing    ratios    ions    lib    charge    decades    ion    electrostatic    performance    exchanged    tuned    electrode    effect    separated    resource    question    mg2    transport    option    reversible    explore    composition    instead    electrolyte    electric    li    polarization    multivalent    variety    lattice    amounts    mainly    supply    minimized    batteries    good    host    grid    naked    radically    lower    storage    intercalated    vehicles    chains    intercalation    shield    solvation    efficient    unfavourable    motivated    pressure    progress    reversibly    libs    al3    density    difference    radius    latest    generality    electrodes    lithium    discharge    thanks    energy    too    put    solvent    successful    mobility    mismatch    co    promise    frustrating    seed    electrical   

Project "SEED" data sheet

The following table provides information about the project.

Coordinator
HUMBOLDT-UNIVERSITAET ZU BERLIN 

Organization address
address: UNTER DEN LINDEN 6
city: BERLIN
postcode: 10117
website: www.hu-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙997˙811 €
 EC max contribution 1˙997˙811 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HUMBOLDT-UNIVERSITAET ZU BERLIN DE (BERLIN) coordinator 1˙997˙811.00

Map

 Project objective

Storing large amounts of electrical energy is a major challenge for the forthcoming decades. Today, lithium-ion batteries (LIBs) are considered the best option for electric vehicles and grid storage but these rising markets put severe pressure on resource and supply chains. The principle of LIBs is based on solid electrodes separated by a liquid electrolyte between which Li ions are reversibly exchanged during charge and discharge. The efficient Li transport in the different phases and across the interfaces is essential for achieving a good performance. A fundamental difference between ion transport in solid phases and ion transport in solutions is that the ions are “naked” in the solid phase but solvated in the liquid phase. Recently major efforts have been initiated to adopt the successful LIB concept to other working ions such as Na, K, Mg2, Ca2 or Al3. This is motivated by the promise of lower cost thanks to their abundance as well as in some cases higher energy density. The progress, however, is limited mainly due to an unfavourable mismatch between the solid electrode host structures and the ion radii or too large charge/radius ratios. Especially multivalent ions lead to severe lattice polarization frustrating ion mobility in solid electrodes. This project aims at a radically different concept, i.e. instead of “naked” ions, solvated ions will be intercalated into the electrodes. Solvent co-intercalation is traditionally considered as highly detrimental. Latest results, however, question the generality of this argument. The SEED project will explore the concept of using solvated ions in solid electrodes for the reversible storage of a variety of ions. As the solvation shell acts as electrostatic shield and can be tuned in its composition, lattice polarization can be minimized. Using this effect, the SEED project finally aims at enabling reversible charge storage of multivalent ions in host structures with properties far beyond current state-of-the art.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More