Opendata, web and dolomites

SEED SIGNED

Solvated Ions in Solid Electrodes: Alternative routes toward rechargeable batteries based on abundant elements

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SEED project word cloud

Explore the words cloud of the SEED project. It provides you a very rough idea of what is the project "SEED" about.

radii    electrodes    rising    batteries    shell    ions    phases    question    naked    charge    liquid    electrolyte    explore    reversible    option    difference    intercalated    put    solvated    transport    chains    li    discharge    frustrating    efforts    ion    reversibly    severe    supply    fundamental    structures    instead    radically    electrical    composition    vehicles    energy    motivated    electric    al3    unfavourable    acts    ratios    forthcoming    lithium    radius    minimized    lib    lattice    libs    generality    electrode    argument    mobility    multivalent    resource    lower    detrimental    progress    effect    na    intercalation    abundance    electrostatic    exchanged    thanks    performance    mg2    decades    amounts    solvent    promise    tuned    limited    co    storage    mainly    polarization    host    initiated    efficient    solvation    separated    markets    latest    storing    successful    ca2    pressure    grid    too    interfaces    density    solutions    solid    good    variety    shield    mismatch    seed   

Project "SEED" data sheet

The following table provides information about the project.

Coordinator
HUMBOLDT-UNIVERSITAET ZU BERLIN 

Organization address
address: UNTER DEN LINDEN 6
city: BERLIN
postcode: 10117
website: www.hu-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙997˙811 €
 EC max contribution 1˙997˙811 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-06-01   to  2025-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HUMBOLDT-UNIVERSITAET ZU BERLIN DE (BERLIN) coordinator 1˙997˙811.00

Map

 Project objective

Storing large amounts of electrical energy is a major challenge for the forthcoming decades. Today, lithium-ion batteries (LIBs) are considered the best option for electric vehicles and grid storage but these rising markets put severe pressure on resource and supply chains. The principle of LIBs is based on solid electrodes separated by a liquid electrolyte between which Li ions are reversibly exchanged during charge and discharge. The efficient Li transport in the different phases and across the interfaces is essential for achieving a good performance. A fundamental difference between ion transport in solid phases and ion transport in solutions is that the ions are “naked” in the solid phase but solvated in the liquid phase. Recently major efforts have been initiated to adopt the successful LIB concept to other working ions such as Na, K, Mg2, Ca2 or Al3. This is motivated by the promise of lower cost thanks to their abundance as well as in some cases higher energy density. The progress, however, is limited mainly due to an unfavourable mismatch between the solid electrode host structures and the ion radii or too large charge/radius ratios. Especially multivalent ions lead to severe lattice polarization frustrating ion mobility in solid electrodes. This project aims at a radically different concept, i.e. instead of “naked” ions, solvated ions will be intercalated into the electrodes. Solvent co-intercalation is traditionally considered as highly detrimental. Latest results, however, question the generality of this argument. The SEED project will explore the concept of using solvated ions in solid electrodes for the reversible storage of a variety of ions. As the solvation shell acts as electrostatic shield and can be tuned in its composition, lattice polarization can be minimized. Using this effect, the SEED project finally aims at enabling reversible charge storage of multivalent ions in host structures with properties far beyond current state-of-the art.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

OSIRIS (2020)

Automatic measurement of speech understanding using EEG

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More