Opendata, web and dolomites


Taming Non-Equilibrium Quantum Matter

Total Cost €


EC-Contrib. €






Project "TANQ" data sheet

The following table provides information about the project.


Organization address
city: GENEVE
postcode: 1211

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙850˙000 €
 EC max contribution 1˙850˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-08-01   to  2025-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 1˙850˙000.00


 Project objective

Recent experimental breakthroughs led to realization of tunable, synthetic quantum systems that allow one to probe and manipulate highly non-equilibrium quantum matter. Driving a system ouf-of-equilibrium changes its properties in unexpected ways, opening opportunities for realizing new states of matter. The central goal of this project is to develop a fundamental theoretical understanding of non-equilibrium dynamics and highly excited eigenstates in quantum many-body systems. The conventional wisdom tells that a non-equilibrium system thermalizes, and can then be described by statistical-mechanics. However, recent breakthroughs revealed an experimentally relevant class of systems, the prime example being disordered, many-body localized (MBL) systems, which defy this wisdom, avoiding thermalization. Ergodicity-breaking systems open new avenues for protecting quantum coherence, and for realizing new non-equilibrium phases of matter. We will study the fundamental mechanisms of ergodicity breaking using a multi-disciplinary approach, which builds on techniques from quantum information, condensed matter physics, quantum optics and mathematical physics. We aim to establish universality classes of quantum dynamics, by studying disordered systems with symmetries, and by characterizing entirely new mechanisms of ergodicity breaking, such as quantum many-body scars. In order to overcome the exponential growth of the many-body Hilbert space, new efficient renormalization and tensor-network methods based on quantum entanglement will be developed. Finally, approaches for manipulating quantum matter and realizing new non-equilibrium phases in ongoing experiments will be developed. The completion of this project will lead to a universal theoretical framework for non-equilibrium quantum dynamics, complementing statistical-mechanics in ergodic systems. Such a framework will enable engineering quantum-coherent many-body states with novel properties and functionalities.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TANQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TANQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BABE (2018)

Why is the world green: testing top-down control of plant-herbivore food webs by experiments with birds, bats and ants

Read More  

EnTER (2020)

Enhanced Mass Transport in Electrochemical Systems for Renewable Fuels and Clean Water

Read More  

PoreDetect (2020)

Bench-top system for detection and analysis of miRNA using solid-state nanopores

Read More