Opendata, web and dolomites

CTS-TEs-ADprogress SIGNED

Cell type-specific molecular analysis of epigenetic changes and transposable element derepression in Alzheimer's disease progression

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CTS-TEs-ADprogress project word cloud

Explore the words cloud of the CTS-TEs-ADprogress project. It provides you a very rough idea of what is the project "CTS-TEs-ADprogress" about.

patients    chromatin    cut    alzheimer    mechanisms    few    plays    resolution    memory    burden    atac    decades    bulk    point    human    alterations    seq    model    cell    limited    healthcare    single    thereby    preclinical    mice    heterochromatin    once    either    occurred    hallmarks    chronic    app    regulatory    mouse    lack    dysregulation    rna    plaques    epigenome    tissue    pathological    aging    subtypes    molecular    signals    evident    inhibit    neuron    stage    impairment    underlying    contributor    progression    cellular    run    worldwide    onset    stress    shown    diagnosed    ps1    structure    death    treatments    isolated    expression    coverage    usually    environmental    age    te    epigenetic    critical    gene    translating    population    correlating    beta    drivers    neurodegeneration    limitations    symptoms    linked    neuronal    recapitulates    samples    mutations    disease    imperative    transposition    survival    pathology    hippocampal    ad    suggesting    influencing    transposable    insertional    symptom   

Project "CTS-TEs-ADprogress" data sheet

The following table provides information about the project.

Coordinator
DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV 

Organization address
address: SIGMUND FREUD STRASSE 27
city: BONN
postcode: 53127
website: www.dzne.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 174˙806 €
 EC max contribution 174˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV DE (BONN) coordinator 174˙806.00

Map

 Project objective

Alzheimer’s disease (AD) is a major contributor to disease burden and healthcare costs worldwide. AD is usually diagnosed once symptoms like memory impairment become evident. However, at this point typical AD pathology such as Aβ plaques and cell death is already widespread, suggesting that molecular changes have occurred decades before symptom onset. With an increasingly aging population and no available treatments, it has become imperative to identify the molecular mechanisms underlying onset and progression of AD. Chronic environmental stress and age-associated changes in stress response have been associated as drivers of AD pathology. The epigenome plays a critical role in translating stress signals into a cellular response by influencing gene expression, which can either promote or inhibit cell survival. Several studies have shown that alterations in chromatin structure, including heterochromatin loss, and associated changes in gene expression contribute to neurodegeneration. In addition, neuronal death was also linked to transposable element (TE) dysregulation due to epigenetic changes, which can lead to changes in gene expression and insertional mutations due to transposition. However, our understanding of epigenetic changes at onset and during progression of AD pathology is very limited, as current studies have two major limitations: 1) lack of cell type resolution due to use of bulk tissue samples and 2) coverage of only few or only one disease stage. Here, single-cell RNA-seq and ATAC-seq as well as CUT&RUN on isolated hippocampal neuron subtypes will be used to identify cell type-specific alterations of gene expression and gene regulatory mechanisms during onset and progression of AD pathology in the APP/PS1 mouse model. APP/PS1 mice are a well-established AD model, which recapitulates many characteristics of preclinical AD in human patients and thereby allows correlating the identified changes with the development of specific pathological hallmarks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CTS-TES-ADPROGRESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CTS-TES-ADPROGRESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More