Opendata, web and dolomites

CTS-TEs-ADprogress SIGNED

Cell type-specific molecular analysis of epigenetic changes and transposable element derepression in Alzheimer's disease progression

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CTS-TEs-ADprogress project word cloud

Explore the words cloud of the CTS-TEs-ADprogress project. It provides you a very rough idea of what is the project "CTS-TEs-ADprogress" about.

pathological    molecular    resolution    heterochromatin    epigenetic    dysregulation    epigenome    expression    model    hallmarks    tissue    memory    thereby    plays    transposable    critical    few    diagnosed    rna    correlating    ps1    linked    environmental    ad    cell    evident    alterations    impairment    stress    limited    coverage    disease    hippocampal    onset    survival    worldwide    human    isolated    symptom    either    samples    usually    recapitulates    cut    suggesting    contributor    chronic    seq    app    occurred    death    inhibit    neuronal    chromatin    pathology    alzheimer    mechanisms    population    treatments    structure    limitations    influencing    aging    bulk    plaques    shown    preclinical    age    mouse    healthcare    lack    gene    underlying    stage    decades    te    imperative    symptoms    neurodegeneration    neuron    cellular    translating    drivers    single    beta    once    atac    subtypes    insertional    mice    progression    regulatory    burden    signals    run    patients    transposition    point    mutations   

Project "CTS-TEs-ADprogress" data sheet

The following table provides information about the project.

Coordinator
DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV 

Organization address
address: SIGMUND FREUD STRASSE 27
city: BONN
postcode: 53127
website: www.dzne.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 174˙806 €
 EC max contribution 174˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    DEUTSCHES ZENTRUM FUR NEURODEGENERATIVE ERKRANKUNGEN EV DE (BONN) coordinator 174˙806.00

Map

 Project objective

Alzheimer’s disease (AD) is a major contributor to disease burden and healthcare costs worldwide. AD is usually diagnosed once symptoms like memory impairment become evident. However, at this point typical AD pathology such as Aβ plaques and cell death is already widespread, suggesting that molecular changes have occurred decades before symptom onset. With an increasingly aging population and no available treatments, it has become imperative to identify the molecular mechanisms underlying onset and progression of AD. Chronic environmental stress and age-associated changes in stress response have been associated as drivers of AD pathology. The epigenome plays a critical role in translating stress signals into a cellular response by influencing gene expression, which can either promote or inhibit cell survival. Several studies have shown that alterations in chromatin structure, including heterochromatin loss, and associated changes in gene expression contribute to neurodegeneration. In addition, neuronal death was also linked to transposable element (TE) dysregulation due to epigenetic changes, which can lead to changes in gene expression and insertional mutations due to transposition. However, our understanding of epigenetic changes at onset and during progression of AD pathology is very limited, as current studies have two major limitations: 1) lack of cell type resolution due to use of bulk tissue samples and 2) coverage of only few or only one disease stage. Here, single-cell RNA-seq and ATAC-seq as well as CUT&RUN on isolated hippocampal neuron subtypes will be used to identify cell type-specific alterations of gene expression and gene regulatory mechanisms during onset and progression of AD pathology in the APP/PS1 mouse model. APP/PS1 mice are a well-established AD model, which recapitulates many characteristics of preclinical AD in human patients and thereby allows correlating the identified changes with the development of specific pathological hallmarks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CTS-TES-ADPROGRESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CTS-TES-ADPROGRESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More