Opendata, web and dolomites

SPINONICS SIGNED

Integrated devices based on spin-orbit photonics.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SPINONICS project word cloud

Explore the words cloud of the SPINONICS project. It provides you a very rough idea of what is the project "SPINONICS" about.

individual    lengths    shaping    length    cavity    spin    nanostructures    rayleigh    laser    axis    guide    writes    inhomogeneous    coupling    refractive    waveguide    nonlinear    itself    tailoring    geometric    led    beam    directional    wavefront    desired    permanently    berry    components    mainly    materials    patterns    dynamic    polarization    latter    optics    guiding    dependent    crystals    wave    index    regime    conventionally    technological    linear    polymerized    emitting    vertical    absence    scenarios    liquid    owing    shorter    transverse    modified    structured    plane    disclose    couplers    propagation    optic    breakthrough    obtain    photonic    nature    surface    standard    angular    metasurface    fundamental    routing    anisotropic    resonators    signal    momenta    larger    pbp    light    pancharatnam    approximation    works    gradient    routers    fabrication    interactions    planar    summarizing    ing    photopolymer    orbit    vectorial    employed    waveguides    functionalities    easily    freeze    media   

Project "SPINONICS" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH-SCHILLER-UNIVERSITAT JENA 

Organization address
address: FURSTENGRABEN 1
city: JENA
postcode: 7743
website: www.uni-jena.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 262˙209 €
 EC max contribution 262˙209 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2020
 Duration (year-month-day) from 2020-08-01   to  2023-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH-SCHILLER-UNIVERSITAT JENA DE (JENA) coordinator 262˙209.00

Map

 Project objective

In recent years several breakthrough have been achieved in wavefront shaping owing to the technological advances in metasurface fabrication. This has led to the whole new field of planar optics wherein the phase and polarization of the beam can be modified due to the Geometric Phase associated with the inhomogeneous distribution of the individual nanostructures. Several novel devices have been proposed, but all these devices work mainly in the plane-wave approximation, i.e., propagation length is much shorter than the Rayleigh length. However many of the integrated photonic devices, including the fundamental component, a waveguide works at lengths much larger than the Rayleigh length. This Project aims to study novel integrated photonic devices based on spin-orbit interactions in anisotropic materials with an inhomogeneous distribution of optic axis resulting in Pancharatnam-Berry Phase (PBP). Tailoring the PBP it is possible to guide light in the absence of any gradient in refractive index, the latter conventionally employed in standard photonic waveguides. In this Project novel integrated photonic components and devices with new functionalities based on PBP will be developed, e.g, directional couplers, polarization-dependent routers, PBP based resonators, fully exploiting the vectorial nature of light by coupling its spin and angular momenta. The Project will mainly focus on liquid crystals where the optic axis can be easily tailored to obtain the desired transverse patterns. However, other materials like structured photopolymer, structured vertical cavity surface emitting laser will also be considered. In the nonlinear regime light itself writes an inhomogeneous distribution of the optic axis resulting in dynamic integrated devices which will be then polymerized to freeze them permanently. Summarizing, the Project will disclose new scenarios for linear and nonlinear integrated optics and enable light guiding and signal routing in structured anisotropic media.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPINONICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPINONICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More  

PreSpeech (2018)

Predicting speech: what and when does the brain predict during language comprehension?

Read More