Opendata, web and dolomites


Integrated devices based on spin-orbit photonics.

Total Cost €


EC-Contrib. €






 SPINONICS project word cloud

Explore the words cloud of the SPINONICS project. It provides you a very rough idea of what is the project "SPINONICS" about.

interactions    anisotropic    works    photopolymer    components    berry    guiding    cavity    mainly    orbit    waveguides    approximation    fabrication    transverse    breakthrough    optic    itself    easily    angular    momenta    vectorial    shaping    wave    index    routing    lengths    laser    desired    fundamental    routers    light    owing    liquid    planar    standard    spin    wavefront    latter    tailoring    nonlinear    dynamic    plane    absence    surface    employed    obtain    disclose    structured    technological    metasurface    emitting    pbp    resonators    crystals    functionalities    conventionally    directional    summarizing    coupling    pancharatnam    media    gradient    beam    signal    waveguide    materials    polarization    permanently    vertical    dependent    optics    geometric    writes    propagation    couplers    freeze    photonic    patterns    refractive    polymerized    length    nanostructures    led    guide    regime    ing    larger    axis    inhomogeneous    linear    scenarios    shorter    individual    modified    nature    rayleigh   

Project "SPINONICS" data sheet

The following table provides information about the project.


Organization address
city: JENA
postcode: 7743

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 262˙209 €
 EC max contribution 262˙209 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2020
 Duration (year-month-day) from 2020-08-01   to  2023-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

In recent years several breakthrough have been achieved in wavefront shaping owing to the technological advances in metasurface fabrication. This has led to the whole new field of planar optics wherein the phase and polarization of the beam can be modified due to the Geometric Phase associated with the inhomogeneous distribution of the individual nanostructures. Several novel devices have been proposed, but all these devices work mainly in the plane-wave approximation, i.e., propagation length is much shorter than the Rayleigh length. However many of the integrated photonic devices, including the fundamental component, a waveguide works at lengths much larger than the Rayleigh length. This Project aims to study novel integrated photonic devices based on spin-orbit interactions in anisotropic materials with an inhomogeneous distribution of optic axis resulting in Pancharatnam-Berry Phase (PBP). Tailoring the PBP it is possible to guide light in the absence of any gradient in refractive index, the latter conventionally employed in standard photonic waveguides. In this Project novel integrated photonic components and devices with new functionalities based on PBP will be developed, e.g, directional couplers, polarization-dependent routers, PBP based resonators, fully exploiting the vectorial nature of light by coupling its spin and angular momenta. The Project will mainly focus on liquid crystals where the optic axis can be easily tailored to obtain the desired transverse patterns. However, other materials like structured photopolymer, structured vertical cavity surface emitting laser will also be considered. In the nonlinear regime light itself writes an inhomogeneous distribution of the optic axis resulting in dynamic integrated devices which will be then polymerized to freeze them permanently. Summarizing, the Project will disclose new scenarios for linear and nonlinear integrated optics and enable light guiding and signal routing in structured anisotropic media.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPINONICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPINONICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RETHEIR (2019)

The return of the heirs

Read More  

EOBRECA (2019)

Differential Roles of Estrogens in Obesity-mediated ER+ Breast Cancer Development

Read More  

ShaRe (2019)

The potential of Sharing Resources for mitigating carbon emissions and other environmental impacts

Read More