Opendata, web and dolomites

SOLVE SIGNED

Stratospheric Ozone Loss from Volcanic Eruptions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SOLVE project word cloud

Explore the words cloud of the SOLVE project. It provides you a very rough idea of what is the project "SOLVE" about.

earth    uv    absorption    composition    agriculture    damage    stratospheric    halons    health    man    decades    spectroscopy    transform    injections    reservoir    models    perturbation    human    experiments    reaction    possibly    dynamics    altered    quantum    cold    incorporating    matrix    harvard    irradiation    variety    lived    depletion    global    made    eruptions    university    copenhagen    absorbs    model    halogen    understand    life    protecting    temperature    fourier    chemical    ozone    significantly    catalytic    containing    amendments    stratosphere    atmospheric    full    laboratory    species    changing    protocol    setup    climate    kinetics    atmosphere    small    calculations    mechanisms    montreal    enhanced    molecular    harmful    away    regarding    emissions    layer    bromine    volcanic    introduce    emerged    last    cfcs    cavity    first    chemistry    recovery    infrared    reactive    explosive    carry    kinetic    caused    banned    scenarios    causing    reactions    nature   

Project "SOLVE" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 286˙921 €
 EC max contribution 286˙921 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2021
 Duration (year-month-day) from 2021-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 286˙921.00
2    PRESIDENT AND FELLOWS OF HARVARD COLLEGE US (CAMBRIDGE) partner 0.00

Map

 Project objective

The stratospheric ozone layer absorbs harmful UV irradiation, protecting life on Earth. Only small changes are needed for significant damage to human health and agriculture, making it essential to understand the chemistry behind ozone depletion. Most of the ozone depletion has been caused by man-made emissions of the CFCs and halons, which are now banned through the Montreal Protocol and its amendments. However, due to the long-lived nature of these species, full recovery of the ozone layer is still decades away. In a changing climate, stratospheric composition, temperature and dynamics may be significantly altered, changing the catalytic ozone depletion in the future. Furthermore, new concerns regarding the ozone layer have emerged, with explosive volcanic eruptions possibly causing the largest perturbation to the ozone layer in the future. In this project, I will use different methods to determine the impact of halogen injections into the stratosphere on the ozone layer, determining the kinetics of bromine-containing species using laboratory and quantum chemical methods and incorporating them into a global chemistry and climate model. The first two years, I will be at Harvard, where I will use different atmospheric models to investigate the stratospheric impact of volcanic eruptions for a variety of future climate scenarios. I will also be carrying out experiments using cavity enhanced absorption spectroscopy to determine the kinetics of an atmospheric reservoir species for reactive bromine in the atmosphere. In the last year of the project I will be at University of Copenhagen and carry out experiments with a cold matrix setup with Fourier transform infrared spectroscopy to investigate the reaction. Throughout the project, I will determine the mechanisms of halogen reactions at the molecular level using quantum chemical calculations. I will introduce the results from the kinetic experiments and quantum calculations into the models as they become available.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOLVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SOLVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More