Opendata, web and dolomites

TMC4MPO SIGNED

Transition metal carbides as efficient catalysts for methane partial oxidation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TMC4MPO project word cloud

Explore the words cloud of the TMC4MPO project. It provides you a very rough idea of what is the project "TMC4MPO" about.

employed    big    tm    ni    natural    carbides    carbon    cu    endothermic    collaborators    precious    chemical    ti    carlo    zr    co    metal    hf    transformation    correlate    affordable    envisions    yield    selectivity    catalysts    atmosphere    exhibited    catalyst    stability    amount    reaction    serve    alternative    times    mo    dataset    consisting    descriptor    h2    imperative    oxidation    suggest    pt    economically    outstanding    computational    au    rh    gas    period    experimental    methane    gathered    kinetic    human    conduct    bond    route    prepare    direct    dioxide    steam    chemicals    valuable    synthesis    screening    transition    conversion    temperatures    prediction    metals    partial    greenhouse    saving    pd    exhibits    nb    density    energy    computationally    tmcs    performance    mpo    theory    overcome    monte    climate    materials    25    predictions    discussed    frameworks    superheated    functional    mixture    ta    reactions    time    activation    reforming   

Project "TMC4MPO" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-03-01   to  2023-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 212˙933.00

Map

 Project objective

Methane is a particularly problematic greenhouse gas as its impact is 25 times greater than carbon dioxide over a 100-year period. Human activity has increased the amount of methane in the atmosphere, contributing to climate change. Therefore, there is an imperative for the transformation of methane into useful chemicals. At this time, the most economically available route for the conversion of methane into more valuable chemicals is via synthesis gas, a mixture of CO and H2. The only large-scale process for natural gas conversion involves a reaction known as methane-steam reforming. However, it is an endothermic process that requires high operating temperatures. Methane partial oxidation (MPO) is a promising energy saving alternative because it does not require the use of superheated steam. A major goal is to find a catalyst that exhibits high activity, selectivity and stability at the relevant reaction conditions. This project envisions the computational prediction of novel MPO catalysts that overcome this challenges by computationally screening a large set of materials consisting of precious metals (Rh, Pd, Pt, Au) and more affordable metals (Co, Ni, Cu) supported on transition metal carbides (TMCs, TM = Ti, Zr, Hf, V, Nb, Ta, Mo, W). These type of catalysts have exhibited outstanding performance in other chemical reactions in the past 5 years. To this end, state-of-the-art Density Functional Theory and Kinetic Monte Carlo frameworks will be employed to provide direct predictions of activity, selectivity, stability and yield for the most promising catalysts at relevant reaction conditions. Moreover, the large amount of results gathered from this project will serve as a big dataset to conduct descriptor analysis, and will suggest key properties that correlate well with their activity for C-H and O-H bond activation. The results obtained will be discussed with our experimental collaborators, who will prepare a selected set of catalysts based on my findings.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TMC4MPO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TMC4MPO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More