Opendata, web and dolomites

MinusMicro SIGNED

Biopolymer Assisted Remediation of Microplastics from Fresh and Saline Water Environments using an Integrated Technology of Coagulation-Ultrasonication/Cavitation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MinusMicro project word cloud

Explore the words cloud of the MinusMicro project. It provides you a very rough idea of what is the project "MinusMicro" about.

removal    forms    hazardous    interactions    surface    suspension    enhanced    hydroalcoholic    mass    correlate    bulk    pollutant    microplastics    time    imprinting    chitosan    purpose    heavy    lasting    surrounding    secondary    shapes    form    electrospun    aquatic    upcycling    dually    particle    reuse    interacting    coagulation    characterizing    sizes    ultrasonicated    emerged    eco    bridging    characterization    kinetic    lies    imprinted    grafted    evaluation    synthesizing    issue    suitable    construction    binding    metals    ionic    activated    popularly    nanofibers    arbitrary    primary    size    meant    collaborations    ortho    harmful    laden    selectivity    microplastic    coagulate    global    perform    gelling    bound    materials    sustainable    novelty    strength    contamination    recovery    fast    double    waste    efficiency    sludge    coagulants    hydrodynamic    environmental    polyaromatics    remediating    impacts    varying    intensifying    synthetic    transfer    specially    biopolymers    generate    salinity    technique    native    capacity    variety    cavitated    alternative    biopolymer    functionalized    assisted   

Project "MinusMicro" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00

Map

 Project objective

Microplastic contamination in aquatic systems has emerged as a global issue with lasting and hazardous environmental impacts. The present research work aims at remediating microplastics in the native and secondary pollutant laden forms using biopolymer assisted coagulation technique. The novelty in this research lies in synthesizing, characterizing and applying various forms of chitosan namely, ultrasonicated (Enhanced ortho-kinetic and hydrodynamic interactions between chitosan and microplastics are expected to enhance particle removal based on the size and surrounding salinity), electrospun (development of chitosan nanofibers in native, grafted and hydroalcoholic forms for intensifying microplastic coagulation especially for the purpose of bulk recovery and upcycling based on enhancing the bridging potential), cavitated (Development of cavitated chitosan nanofibers of arbitrary sizes and correlate it with the overall gelling strength and coagulation efficiency for removal of microplastics of varying shapes) and surface imprinting (Development of a ‘double imprinted form’ of chitosan particle suspension specially meant to coagulate microplastics by dually interacting with the bound ionic heavy metals and polyaromatics, due to its high binding capacity, high selectivity, and fast mass transfer). The primary research objectives include (i) development and characterization of various functionalized forms of chitosan (ii) generate a two-way evaluation system for coagulation potential and (iii) develop suitable collaborations with waste management organizations and perform real-time application on microplastic recovery and sludge reuse (for construction materials). A wide variety of activated biopolymers would therefore be a sustainable, eco-friendly and effective alternative to synthetic and harmful coagulants used very popularly.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MINUSMICRO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MINUSMICRO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CLIMACY (2020)

Practices of Climate Diplomacy and Uneven Policy Responses on Climate Change on Human Mobility

Read More  

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More