Opendata, web and dolomites

MinusMicro SIGNED

Biopolymer Assisted Remediation of Microplastics from Fresh and Saline Water Environments using an Integrated Technology of Coagulation-Ultrasonication/Cavitation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MinusMicro project word cloud

Explore the words cloud of the MinusMicro project. It provides you a very rough idea of what is the project "MinusMicro" about.

interacting    recovery    issue    nanofibers    bound    environmental    pollutant    surrounding    gelling    novelty    efficiency    polyaromatics    assisted    upcycling    laden    forms    biopolymer    selectivity    hydrodynamic    chitosan    cavitated    size    construction    electrospun    ortho    heavy    imprinted    fast    meant    dually    reuse    sludge    correlate    characterizing    collaborations    strength    coagulation    waste    harmful    ionic    suitable    binding    global    contamination    synthesizing    emerged    lies    microplastic    particle    perform    functionalized    eco    varying    mass    biopolymers    alternative    interactions    enhanced    bridging    surface    microplastics    intensifying    coagulants    variety    arbitrary    ultrasonicated    specially    sustainable    bulk    lasting    purpose    form    sizes    removal    evaluation    time    hydroalcoholic    grafted    coagulate    suspension    native    aquatic    transfer    synthetic    remediating    primary    double    salinity    imprinting    metals    materials    impacts    kinetic    activated    hazardous    technique    shapes    characterization    generate    popularly    capacity    secondary   

Project "MinusMicro" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00

Map

 Project objective

Microplastic contamination in aquatic systems has emerged as a global issue with lasting and hazardous environmental impacts. The present research work aims at remediating microplastics in the native and secondary pollutant laden forms using biopolymer assisted coagulation technique. The novelty in this research lies in synthesizing, characterizing and applying various forms of chitosan namely, ultrasonicated (Enhanced ortho-kinetic and hydrodynamic interactions between chitosan and microplastics are expected to enhance particle removal based on the size and surrounding salinity), electrospun (development of chitosan nanofibers in native, grafted and hydroalcoholic forms for intensifying microplastic coagulation especially for the purpose of bulk recovery and upcycling based on enhancing the bridging potential), cavitated (Development of cavitated chitosan nanofibers of arbitrary sizes and correlate it with the overall gelling strength and coagulation efficiency for removal of microplastics of varying shapes) and surface imprinting (Development of a ‘double imprinted form’ of chitosan particle suspension specially meant to coagulate microplastics by dually interacting with the bound ionic heavy metals and polyaromatics, due to its high binding capacity, high selectivity, and fast mass transfer). The primary research objectives include (i) development and characterization of various functionalized forms of chitosan (ii) generate a two-way evaluation system for coagulation potential and (iii) develop suitable collaborations with waste management organizations and perform real-time application on microplastic recovery and sludge reuse (for construction materials). A wide variety of activated biopolymers would therefore be a sustainable, eco-friendly and effective alternative to synthetic and harmful coagulants used very popularly.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MINUSMICRO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MINUSMICRO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More