Opendata, web and dolomites

Siphony SIGNED

Combination of Supercritical Carbon Dioxide and Water for foaming of polymers

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Siphony project word cloud

Explore the words cloud of the Siphony project. It provides you a very rough idea of what is the project "Siphony" about.

multidisciplinary    dr    thermodynamics    breakthrough    fluids    carbon    stage    rated    redesigned    mode    insulators    transference    foaming    supercritical    extra    performing    benefits    generate    energy    polymers    approximately    annex    employing    dissolution    polymer    power    initial    continuous    invention    hit    demonstrated    innovative    pores    pmma    nano    polymethyl    water    accurate    coalition    combination    siphony    expansion    material    softening    isenthalpic    optimized    gt    chemical    time    swelling    unconventional    revolutionize    maximize    itself    cantero    cells    materials    chemistry    cellular    danilo    decompression    create    laboratories    residence    sudden    shear    thermal    sub    temperature    explosion    insulation    dioxide    density    methacrylate    reactor    invented    thermodynamic    exceptional    never    dropping    disruptive    incorporated    created    resistant    cellmat    times    industry    cm3    particle    weight    venture    physics    revolutionary    engineering    1013    size    acoustic    outstanding    heat   

Project "Siphony" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD DE VALLADOLID 

Organization address
address: PLAZA SANTA CRUZ 8 PALACIO DE SANTA CRUZ
city: VALLADOLID
postcode: 47002
website: www.uva.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2021
 Duration (year-month-day) from 2021-03-15   to  2023-03-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD DE VALLADOLID ES (VALLADOLID) coordinator 172˙932.00

Map

 Project objective

Siphony is a disruptive project created from a Breakthrough Materials Coalition between CellMat Laboratories and Dr. Danilo Cantero. This is a multidisciplinary venture involving the Physics and Chemistry of polymers and the Thermodynamics and Process Engineering of Supercritical Fluids. Sub and Supercritical water will be annex to the use of carbon dioxide in the foaming of Polymethyl methacrylate. The innovative and never seen before addition of sub and supercritical water will create benefits in the chemical swelling of the polymer and the addition of thermodynamic energy of explosion, approximately 5-6 times more than carbon dioxide itself. With this, it is expected to achieve the extra hit of power and material softening to reach an outstanding nano cellular polymer of very low density (10 times density reduction compared to initial polymer) and high pores density (>1013 pores/cm3). This kind of materials has outstanding properties as insulators (thermal and acoustic) in many fields of the industry. This proposed invention by employing Siphony process will create an exceptional rated polymer that will revolutionize the insulation industry by dropping insulators weight and increasing the heat transference resistant. Siphony also involves the application of the revolutionary concept invented by Danilo Cantero: the Continuous Sudden Expansion Reactor. The application of this technology to the foaming process of PMMA will bring unconventional properties to the product as well as to the process of foaming. This technology has demonstrated accurate control of residence time and temperature in a continuous mode. In this project, the technology will be redesigned to maximize the water/carbon dioxide dissolution in PMMA and the water/carbon dioxide expansion by sudden decompression in an isenthalpic stage. Also, the high level of shear that is incorporated by this process will be optimized to generate the best performing combination of PMMA particle size and cells size.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SIPHONY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SIPHONY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MOSAiC (2019)

Multimode cOrrelations in microwave photonics with Superconducting quAntum Circuits

Read More  

Goc-MM (2019)

Human gut microbiota on gut-on-a-chip

Read More  

POSPORI (2019)

Polymer Optical Sensors for Prolonged Overseeing the Robustness of civil Infrastructures

Read More