BRISQ2

Bright Squeezed Vacuum and its Applications

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address city: Erlangen

contact info
Titolo: Dr.
Nome: Sabine
Cognome: Koenig
Email: send email
Telefono: +49 9131 6877 500
Fax: +49 9131 6877109

 Nazionalità Coordinatore Germany [DE]
 Sito del progetto http://www.brisq2.eu
 Totale costo 2˙387˙060 €
 EC contributo 1˙849˙760 €
 Programma FP7-ICT
Specific Programme "Cooperation": Information and communication technologies
 Code Call FP7-ICT-2011-C
 Funding Scheme CP
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-12-01   -   2015-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address city: Erlangen

contact info
Titolo: Dr.
Nome: Sabine
Cognome: Koenig
Email: send email
Telefono: +49 9131 6877 500
Fax: +49 9131 6877109

DE (Erlangen) coordinator 0.00
2    ISTITUTO NAZIONALE DI RICERCA METROLOGICA

 Organization address address: STRADA DELLE CACCE
city: TORINO

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Zornio
Email: send email
Telefono: +39 011 3919531

IT (TORINO) participant 0.00
3    M.V. LOMONOSOV MOSCOW STATE UNIVERSITY

 Organization address address: LENINSKIE GORY MAIN BUILDING
city: MOSCOW

contact info
Titolo: Prof.
Nome: Andrey
Cognome: Fedyanin
Email: send email
Telefono: +7495939 1684
Fax: +7495939 1104

RU (MOSCOW) participant 0.00
4    UNIVERZITA PALACKEHO V OLOMOUCI

 Organization address address: KRIZKOVSKEHO
city: OLOMOUC

contact info
Titolo: Ms.
Nome: Gabriela
Cognome: Pokorná
Email: send email
Telefono: 420586000000

CZ (OLOMOUC) participant 0.00
5    UNIWERSYTET GDANSKI

 Organization address address: ul. Bazynskiego
city: GDANSK

contact info
Titolo: Prof.
Nome: Marek
Cognome: Zukowski
Email: send email
Telefono: +4858 5232056
Fax: +4858 5232056

PL (GDANSK) participant 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

qkd    few    efficient    qit    light    photons    squeezed    protocols    objects    macroscopic    single    correlations    coherent    interactions    photon    quantum    bsv    manifest   

 Obiettivo del progetto (Objective)

Quantum information technology (QIT) offers faster processing and more secure transfer of information based on the laws of quantum mechanics. It is a vital technology of the future as conventional methods reach their limits. Current QIT operates with microscopic objects: single atoms, ions, molecules, and especially photons. Few-photon states of light are used in commercial quantum key distribution (QKD) systems. However, as single photons do not have efficient non-destructive interactions with each other or with material objects, their usefulness is limited. It is tempting to extend QIT protocols to macroscopic states of light, enabling more efficient interactions, but it is widely believed that going to macroscopic scale degrades quantum features. In particular, squeezed coherent states of light contain classical excitation as their largest part and are therefore inapplicable in most QIT protocols.We challenge the accepted viewpoint that only few-photon states provide the optimal features required in QIT. Unlike squeezed coherent states, bright squeezed vacuum (BSV) has perfect photon-number correlations. It thus resembles two-photon entangled states but has macroscopic photon numbers. The 5 complementary teams of our consortium plan to perform proof-of-principle experiments and calculations showing that BSV can (1) manifest experimentally accessible non-separability; (2) violate Bell inequalities, including new ones, specific for such states, and thus manifest new non-classical correlations; (3) be prepared in a single Schmidt mode; (4) be used in QKD and (5) have new applications in quantum imaging. Achieving these results will foster QIT development in a new direction.Since BSV is macroscopic, it can be controlled by tapping a small portion and using almost non-invasive feedforward techniques. In QKD protocols based on entanglement this could result in practical device-independent schemes, as the macroscopic nature would remove the detection loophole problem.

Altri progetti dello stesso programma (FP7-ICT)

TERESA (2009)

Trusted computing Engineering for Resource constrained Embedded Systems Application

Read More  

IDESA-2 (2010)

Implementation of widespread IC design skills in advanced deep submicron technologies at European Academia

Read More  

AVTR (2012)

Optimal Electrical Powertrain via Adaptable Voltage and Transmission Ratio

Read More